A BOOK PROOF OF THE MIDDLE LEVELS THEOREM

TORSTEN MÜTZE

Abstract

We give a short constructive proof for the existence of a Hamilton cycle in the subgraph of the $(2 n+1)$-dimensional hypercube induced by all vertices with exactly n or $n+1$ many 1 s .

The n-dimensional hypercube Q_{n} is the graph that has as vertices all bitstrings of length n, and an edge between any two bitstrings that differ in a single bit. The weight of a vertex x of Q_{n} is the number of 1 s in x. The k th level of Q_{n} is the set of vertices with weight k.

Theorem 1. For all $n \geq 1$, the subgraph of $Q_{2 n+1}$ induced by levels n and $n+1$ has a Hamilton cycle.
Theorem 1 solves the well-known middle levels conjecture, and it was first proved in Müt16] (see this paper for a history of the problem). A shorter proof was presented in [GMN18] (12 pages). Here, we present a proof from 'the book'.

Proof. We write D_{n} for all Dyck words of length $2 n$, i.e., bitstrings of length $2 n$ with weight n in which every prefix contains at least as many 1 s as 0 s. We also define $D:=\bigcup_{n \geq 0} D_{n}$. Any $x \in D_{n}$ can be decomposed uniquely as $x=1 u 0 v$ with $u, v \in D$. Furthermore, Dyck words of length $2 n$ can be identified by ordered rooted trees with n edges as follows; see Figure 1: Traverse the tree with depth-first search and write a 1 -bit for every step away from the root and a 0 -bit for every step towards the root. For any bitstring x, we write $\sigma^{s}(x)$ for the cyclic right rotation of x by s steps. We write A_{n} and B_{n} for the vertices of $Q_{2 n+1}$ in level n or $n+1$, respectively, and we define $M_{n}:=Q_{2 n+1}\left[A_{n} \cup B_{n}\right]$. For any $x \in D_{n}, b \in\{0,1\}$ and $s \in\{0, \ldots, 2 n\}$ we define $\langle x, b, s\rangle:=\sigma^{s}(x b)$. Note that we have $A_{n}=\left\{\langle x, 0, s\rangle \mid x \in D_{n} \wedge 0 \leq s \leq 2 n\right\}$ and $B_{n}=\left\{\langle x, 1, s\rangle \mid x \in D_{n} \wedge 0 \leq s \leq 2 n\right\}$. Thus, we think of every vertex of M_{n} as a triple $\langle x, b, s\rangle$, i.e., an ordered rooted tree x with n edges referred to as the nut, a bit $b \in\{0,1\}$, and an integer $s \in\{0, \ldots, 2 n\}$ referred to as the shift.

The first step is to construct a cycle factor in the graph M_{n}. For this we define a mapping $f: A_{n} \cup B_{n} \rightarrow A_{n} \cup B_{n}$ as follows. Given an ordered rooted tree $x=1 u 0 v \in D_{n}$ with $u, v \in D$, a tree rotation yields the tree $r(x):=u 1 v 0 \in D_{n}$; see Figure 2. We define $f(\langle x, 0, s\rangle):=\langle r(x), 1, s+1\rangle$ and $f(\langle x, 1, s\rangle):=\langle x, 0, s\rangle$. It is easy to see that f is a bijection. Indeed, the inverse mapping is $f^{-1}(\langle x, 0, s\rangle)=\langle x, 1, s\rangle$ and $f^{-1}(\langle x, 1, s\rangle)=\left\langle r^{-1}(x), 0, s-1\right\rangle$.

Figure 2. Tree rotation. Furthermore, f changes only a single bit. To see this observe that for $x=1 u 0 v$ with $u, v \in D$ the bitstrings $\langle x, 0, s\rangle=\sigma^{s}(1 u 0 v 0)$ and $f(\langle x, 0, s\rangle)=\langle r(x), 1, s+1\rangle=\sigma^{s+1}(u 1 v 01)=\sigma^{s}(1 u 1 v 0)$ differ only in the bit between the substrings u and v. We also note that $f^{2}(\langle x, 0, s\rangle)=\langle r(x), 0, s+1\rangle \neq\langle x, 0, s\rangle$. Consequently, for any vertex y of M_{n}, the sequence $C(y):=\left(y, f(y), f^{2}(y), \ldots\right)$ is a cycle, and $F_{n}:=\left\{C(y) \mid y \in A_{n} \cup B_{n}\right\}$ is a cycle factor in M_{n}.

[^0]As $f^{2}(\langle x, 0, s\rangle)=\langle r(x), 0, s+1\rangle$, moving two steps forward along a cycle of F_{n} applies a tree rotation to the nut, and increases the shift by +1 . As the ordered rooted tree $x \in D_{n}$ has n edges, we have $x=r^{2 n}(x)$. Consequently, the minimum integer $t>0$ such that $x=r^{t}(x)$ must divide $2 n$. It follows that $\operatorname{gcd}(t, 2 n+1)=1$, hence all shifts of the nut x are contained in the cycle $C(\langle x, 0,0\rangle)$, i.e., $\langle x, 0, s\rangle \in C(\langle x, 0,0\rangle)$ for all $s \in\{0, \ldots, 2 n\}$. Therefore, the cycles of F_{n} are in bijection with equivalence classes of ordered rooted trees with n edges under tree rotation, also known as plane trees. In particular, the number of cycles of F_{n} is the number of plane trees with n edges (OEIS A002995).

The second step is to glue the cycles of the factor F_{n} to a single Hamilton cycle. We call an ordered rooted tree $x \in D_{n}$ pullable if $x=110 u 0 v$ for $u, v \in D$, and we define $p(x):=101 u 0 v \in D_{n}$. We refer to $p(x)$ as the tree obtained from x by a pull operation. In words, the leftmost leaf of x is in distance 2 from the root, and the edge leading to this leaf is removed and reattached as the new leftmost child of the

Figure 3. Pull operation. root in $p(x)$; see Figure 3. For any pullable tree $x=110 u 0 v \in D_{n}$ with $u, v \in D$, we define $y:=\langle x, 0,0\rangle=x 0$ and $z:=\langle p(x), 0,0\rangle=p(x) 0$, and we consider the 6 cycle $G(x):=\left(y, f(y), f^{6}(y), f^{5}(y), z, f(z)\right)=(110 u 0 v 0,110 u 1 v 0,100 u 1 v 0,101 u 1 v 0,101 u 0 v 0,111 u 0 v 0)$, which has the edges $(y, f(y))$ and $\left(f^{6}(y), f^{5}(y)\right)$ in common with the cycle $C(y)$, and the edge $(z, f(z))$ in common with the cycle $C(z)$; see Figure 4 . Consequently, if $C(y)$ and $C(z)$ are two distinct cycles, then the symmetric difference between the edge sets of $C(y), C(z)$ and $G(x)$ is a single cycle on the same set of vertices, i.e., $G(x)$ glues the cycles $C(y)$ and $C(z)$ together. We define $S(x):=\left\{f^{i}(y) \mid i=0, \ldots, 6\right\} \cup\{z, f(z)\}$, and we claim that for any two pullable trees $x \neq x^{\prime}$, we have $S(x) \cap S\left(x^{\prime}\right)=\emptyset$, i.e., the cycles $C(x)$ and $C\left(x^{\prime}\right)$ are (vertex-)disjoint. To see this, consider the shifts of the vertices in $S(x)$ and $S\left(x^{\prime}\right)$, which are $0,1,1,2,2,3,3,0,1$. It follows that if $S(x) \cap S\left(x^{\prime}\right) \neq \emptyset$, then we have $x=x^{\prime}$, $p(x)=x^{\prime}$, or $x=p\left(x^{\prime}\right)$. These cases are ruled out by the assumption $x \neq x^{\prime}$, the fact that $p(x)=10 \cdots$ and $x^{\prime}=11 \cdots$ differ in the second bit, and that $x=11 \cdots$ and $p\left(x^{\prime}\right)=10 \cdots$ differ in the second bit, respectively.

To complete the proof, it remains to show that the

Figure 4. Gluing 6-cycle $G(x)$. cycles of the factor F_{n} can be glued to a single cycle via gluing cycles $G(x)$ for a suitable set of pullable trees $x \in D_{n}$. As argued before, none of the gluing operations interfere with each other. Using the interpretation of the cycles of F_{n} as equivalence classes of ordered rooted trees under tree rotation, it suffices to prove that every cycle can be glued to the cycle that corresponds to the star with n edges. As each gluing cycle corresponds to a pull operation, this amounts to proving that any ordered rooted tree $x \in D_{n}$ can be transformed to the star $(10)^{n}$ via a sequence of tree rotations and/or pulls.

Indeed, this is achieved as follows: We fix a vertex c of x to become the center of the star (this vertex never changes), and we repeatedly perform the following three steps; see Figure 5. (i) rotate x to a tree x^{\prime} such that c is root and the leftmost leaf of x^{\prime} is in distance $d>1$ from c; (ii) apply $d-2$ rotations to x^{\prime} to obtain a tree $x^{\prime \prime}$ whose leftmost leaf has distance 2 from the root; (iii) perform a pull. As step (iii) decreases the sum of distances of all vertices from c, we reach the star after finitely many steps.

This completes the proof of the theorem.

Acknowledgements

Arturo Merino suggested the triple notation $\langle x, b, s\rangle$, which allowed further streamlining of the proof.

References

[GMN18] P. Gregor, T. Mütze, and J. Nummenpalo. A short proof of the middle levels theorem. Discrete Anal., Paper No. 8:12 pp., 2018.
[Müt16] T. Mütze. Proof of the middle levels conjecture. Proc. Lond. Math. Soc., 112(4):677-713, 2016.

[^0]: (Torsten Mütze) Department of Computer Science, University of Warwick, United Kingdom \& Department of Theoretical Computer Science and Mathematical Logic, Charles University, Prague, Czech Republic E-mail address: torsten.mutze@warwick.ac.uk.
 This work was supported by Czech Science Foundation grant GA 22-15272S.

