
TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

ARTURO MERINO AND TORSTEN MÜTZE

Abstract. In this paper, we present a new framework that exploits combinatorial optimization
for efficiently generating a large variety of combinatorial objects based on graphs, matroids,
posets and polytopes. Our method relies on a simple and versatile algorithm for computing a
Hamilton path on the skeleton of any 0/1-polytope conv(X), where X ⊆ {0, 1}n. The algorithm
uses as a black box any algorithm that solves a variant of the classical linear optimization
problem min{w · x | x ∈ X}, and the resulting delay, i.e., the running time per visited vertex on
the Hamilton path, is only by a factor of log n larger than the running time of the optimization
algorithm. When X encodes a particular class of combinatorial objects, then traversing the
skeleton of the polytope conv(X) along a Hamilton path corresponds to listing the combinatorial
objects by local change operations, i.e., we obtain Gray code listings.

As concrete results of our general framework, we obtain efficient algorithms for generating
all (c-optimal) bases and independent sets in a matroid; (c-optimal) spanning trees, forests,
matchings, maximum matchings, and c-optimal matchings in a general graph; vertex covers,
minimum vertex covers, c-optimal vertex covers, stable sets, maximum stable sets and c-optimal
stable sets in a bipartite graph; as well as antichains, maximum antichains, c-optimal antichains,
and c-optimal ideals of a poset. Specifically, the delay and space required by these algorithms
are polynomial in the size of the matroid, graph, or poset, respectively. Furthermore, all of these
listings correspond to Hamilton paths on the corresponding combinatorial polytopes, namely the
base polytope, matching polytope, vertex cover polytope, stable set polytope, chain polytope
and order polytope, respectively.

As another corollary from our framework, we obtain an O(tLP log n) delay algorithm for the
vertex enumeration problem on 0/1-polytopes {x ∈ Rn | Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm,
and tLP is the time needed to solve the linear program min{w · x | Ax ≤ b}. This improves upon
the 25-year old O(tLP n) delay algorithm due to Bussieck and Lübbecke.

(Arturo Merino) Department of Mathematics, TU Berlin, Germany
(Torsten Mütze) Department of Computer Science, University of Warwick, United Kingdom

& Department of Theoretical Computer Science and Mathematical Logic, Charles University,
Prague, Czech Republic

E-mail addresses: merino@math.tu-berlin.de, torsten.mutze@warwick.ac.uk.
Arturo Merino was supported by ANID Becas Chile 2019-72200522. Torsten Mütze was supported by Czech

Science Foundation grant GA 22-15272S.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 1

1. Introduction

In mathematics and computer science, we frequently encounter different classes of combinatorial
objects, for example spanning trees, matchings or vertex covers of a graph, independent sets
or bases of a matroid, ideals or antichains of a poset, etc. Given a class X of objects, in
combinatorial optimization we are interested in finding the best object from X w.r.t. some
objective function f , i.e., we aim to compute a minimizer of f(x) over all x ∈ X. Classical
examples for such problems on graphs are computing a minimum weight spanning tree, a
maximum weight matching, or a minimum size vertex cover. Motivated by countless practical
instances of such problems, the field of combinatorial optimization has matured over decades
into a huge body of work (see e.g. [CCPS98, Sch03a, Sch03b, Sch03c, KV18]), which combines
powerful algorithmic, combinatorial and polyhedral methods. Important techniques include
dynamic programming, linear and integer programming, network flows, branch-and-bound and
branch-and-cut methods, approximation algorithms, parametrized algorithms etc.

Another fundamental algorithmic task apart from combinatorial optimization is combinatorial
generation, covered in depth in Knuth’s book [Knu11]. Given a class X of objects, the task
here is to exhaustively list each object from X exactly once. The running time of a generation
algorithm is typically measured by its delay, i.e., by the time spent between generating any
two consecutive objects from X. Sometimes it is reasonable to relax this worst-case measure,
and to consider the amortized delay, i.e., the total time spent to generate X, divided by the
cardinality of X. Algorithms that achieve delay O(1) are the holy grail, and they are sometimes
called loopless. Compared to combinatorial optimization, the area of combinatorial generation
is much less matured. Nonetheless, some general techniques are available, such as Avis and
Fukuda’s reverse search [AF96], the proximity search method of Conte, Grossi, Marino, Uno and
Versari [CGM+22], the bubble language framework of Ruskey, Sawada, and Williams [RSW12],
Williams’ greedy algorithm [Wil13], and the permutation language framework of Hartung, Hoang,
Mütze and Williams [HHMW22].

A particularly useful concept for developing efficient generation algorithms are Gray codes. A
combinatorial Gray code [Rus16, Sav97, Müt22] for a class of objects is a listing of the objects
such that any two consecutive objects in the list differ only by a local change. Gray codes lend
themselves very well to efficient generation, and often result in algorithms with small delay,
sometimes even loopless algorithms. For example, the spanning trees of any graph admit an
edge exchange Gray code, i.e., they can be listed such that any two consecutive spanning trees
differ in removing one edge from the current spanning tree and adding another edge from the
graph to obtain the next spanning tree; see Figure 1. Furthermore, such a Gray code can be
computed with amortized delay O(1) [Smi97] (see also [Knu11, Sec. 7.2.1.6]).

There is a trivial connection between combinatorial generation and optimization: For a given
class of objects X, we can compute a minimizer of f(x) by exhaustively generating X and
computing f(x) for each of the objects x in the list (for this the list need not be stored). In

1

2

3 5

4
+2

−1 −3

+1 +5

−4

+4+3

−3−2

+2

−2−1

+1

{1,3,4} {2,3,4} {1,2,4} {1,2,5} {1,3,5} {2,3,5} {2,4,5} {1,4,5}
10110 01110 11010 11001 10101 01101 01011 10011

Figure 1. Edge exchange Gray code for the spanning trees of the diamond graph on the
left. Below each spanning tree is the subset of tree edges and its indicator vector.



2 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

terms of running time, this approach is prohibitively expensive in many applications, as the size
of X is often exponential in some parameter. For example, a minimum weight spanning tree in
an n-vertex graph can be computed in time polynomial in n, but the number of spanning trees
is typically exponential in n.

1.1. Our contribution. In this work, we establish a nontrivial connection between combinatorial
generation and optimization that goes in the opposite direction. Specifically, we show that if the
optimization problem minx∈X f(x) can be solved efficiently, then this directly yields an efficient
generation algorithm for X. More precisely, the delay for the resulting generation algorithm is
only by a logarithmic factor larger than the running time of any optimization algorithm. The
optimization algorithm is used as a black box inside the generation algorithm, and in this way we
harness the powerful machinery of combinatorial optimization for the purpose of combinatorial
generation. Furthermore, the generated listings of objects correspond to a Hamilton path on the
skeleton of a 0/1-polytope that is associated naturally with the combinatorial objects, i.e., we
obtain a Gray code listing. Additional notable features of our generation algorithm are: the
algorithm is conceptually simple and operates greedily, it uses only elementary data structures,
it is easy to implement, and it contains several tunable parameters that can be exploited
for different applications. We thus provide an extremely versatile algorithmic framework to
systematically solve the combinatorial generation problem for a large variety of different classes
of combinatorial objects, which comes with strong guarantees for the delay and the closeness
between consecutively generated objects. Table 1 summarizes the most important concrete
results obtained from our framework, and those will be discussed in more detail in Section 1.6.
Informally speaking, we add a new powerful ‘hammer’ to the toolbox of combinatorial generation
research, which is forged by combining algorithmic, combinatorial and polyhedral ideas.

In this paper, we focus on presenting the main ingredients of our framework that connects
combinatorial optimization to combinatorial generation, and we illustrate the method by deriving
several new generation algorithms for a number of combinatorial objects based on graphs,
matroids, posets and polytopes. This paper will be followed by others in which this new
paradigm is exploited further in various directions (implementations, computational studies,
improved results for special cases, etc.).

1.2. Encoding of objects by bitstrings. To run our generation algorithm, we rely on a
unified method to encode the various different classes X of combinatorial objects. For this we
use a set of bitstrings X ⊆ {0, 1}n of length n, which lends itself particularly well for computer
implementation. An important notion in this context is an indicator vector. Given a subset
S ⊆ [n] := {1, . . . , n}, the indicator vector 1S ∈ {0, 1}n is defined as

(1S)i :=

1 if i ∈ S,

0 if i /∈ S.

For example, the set S = {1, 4, 5} ⊆ [6] has the indicator vector 1S = (1, 0, 0, 1, 1, 0). The set of
bitstrings X ⊆ {0, 1}n that is used to encode the combinatorial objects of interest is simply the
set of all corresponding indicator vectors. Specifically, combinatorial objects based on graphs
are encoded by considering the corresponding subsets of vertices or edges, and by their indicator
vectors. For example, indicator vectors for the spanning trees or matchings of a graph H have
length m, where m is the number of edges of H; see Figure 1. Similarly, indicator vectors for
ideals or antichains of a poset P have length n, where n is the number of elements of P . Note
that this encoding is based on a particular ordering of the ground set. In other words, changing
the ordering of the ground set corresponds to permuting the entries of all bitstrings in X.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 3

Table 1. Overview of results derived from our generation framework. For each class of
combinatorial objects we show the local change operation between consecutively generated
objects, the corresponding optimization problem, and the resulting (worst-case) delay per
generated object, highlighted if superior to previous results. Earlier algorithms are listed
in the penultimate column, and they are sometimes incomparable (worst-case delay vs.
amortized delay, Gray code vs. non-Gray code). None of the earlier algorithms computes a
Hamilton path on the polytope, with the only exception being the results [Smi97, MMW22]
on spanning trees and matroid bases. The last column gives pointers to later sections with
detailed derivations. The vector c ∈ Zn is an arbitrary integer-valued cost vector with
maximum absolute value |c|.

Objects Local change Optimization problem Delay Previous work Ref.

O
th

er

vertices of a
0/1-polytope

edge move linear programming with weights
{−1, 0, 1}: tLP

O(tLP log n) [BL98]: O(tLP n) delay Cor. 29

c-optimal vertices of
a 0/1-polytope

edge move linear programming: tLP O(tLP poly(log n)) [BL98]: O(tLP n) delay Cor. 30

feasible solutions to
a knapsack problem

knapsack with profits {−1, 0, 1}:
O(n) (sort weights in preprocessing)

O(n log n) [SW12]: O(1) amortized delay Gray
code

matroid bases element exchange minimum weight basis with weights
{−2, −1, 0, 1, 2}: tLO

O(tLO log n) [Uno99]: amortized delay
[MMW22]: delay Gray code

c-optimal matroid
bases

same weight element
exchange

minimum weight basis: tLO O(tLO log n)

matroid independent
sets

add/remove/
exchange element

minimum weight basis with
weights {−2, −1}: tLO

O(tLO log n)

G
ra

p
h spanning trees edge exchange minimum spanning tree with weights

{−2, −1, 0, 1, 2}: O(m)
O(m log n) [KR91]: O(1) amortized delay

[Smi97]: O(1) amort. delay Gray code
[MMW22]: O(m log n(log log n)3)
delay Gray code

Cor. 31

c-optimal spanning
trees

same weight edge
exchange

minimum spanning tree:
O(mα(m, n)) [Cha00]

O(mα(m, n) log n) [YKW10]: O(m log n) amortized
delay

Cor. 32

forests add/remove/
exchange edge

spanning forest computation →
graph search: O(m + n)

O((m + n) log n)

matchings alternating ≤3-path
exchange

maximum matching:
O(m

√
n) [MV80]

O(m
√

n log n) Cor. 33

maximum matchings alternating
path/cycle exchange

maximum weight matching with
weights {m − 1, m, m + 1}:
O(m

√
n log(n)) [DPS18]

O(m
√

n(log n)2) Cor. 35

c-optimal matchings c-balanced
alternating
path/cycle
exchange

maximum weight matching:
O(m

√
n log(n|c|)) [DPS18]

O(m
√

n log(n|c|) log n) Cor. 34

maximum weight matching:
O(mn + n2 log n) [Gab17]

O((mn + n2 log n) log n)

B
ip

ar
ti

te
gr

ap
h matchings alternating ≤3-path

exchange
maximum bipartite matching:
O(m

√
n) [HK73]

O(m
√

n log n)

maximum matchings alternating
path/cycle exchange

maximum weight bipartite matching
with weights {m − 1, m, m + 1}:
O(m

√
n log n) [DS12]

O(m
√

n(log n)2) [Uno97]: O(n) delay

c-optimal matchings c-balanced
alternating
path/cycle
exchange

maximum weight bipartite matching:
O(m

√
n log(|c|)) [DS12]

O(m
√

n log(|c|) log n) [FM92]: O(mn) delay for c-optimal
perfect matchings

maximum weight bipartite matching:
O(mn + n2 log log n) [Tho04]

O((mn+n2 log log n) log n)

vertex covers connected symmetric
difference exchange

minimum bipartite vertex cover:
O(m

√
n) [HK73]

O(m
√

n log n)

minimum vertex
covers

connected symmetric
difference exchange

maximum flow with capacities
{n − 1, n, n + 1}: O(mn) [Orl13]

O(mn log n)

c-optimal vertex
covers

connected symmetric
difference exchange

maximum flow: O(mn) [Orl13] O(mn log n)

P
os

et

antichains connected symmetric
difference exchange

maximum antichain → maximum
bipartite matching: O(n2.5/

√
log n)

[ABMP91] (cf. [FRS03])

O(n2.5√
log n)

maximum antichains connected symmetric
difference exchange

MWCCG with weights
{n − 1, n, n + 1}: O(n4) [Gav00]

O(n4 log n)

c-optimal antichains connected symmetric
difference exchange

maximum weight clique in
cocomparability graph (MWCCG):
O(n4) [Gav00]

O(n4 log n)

ideals connected symmetric
difference exchange

MWCCG with weights {−1, 1}:
O(n4) [Gav00]

O(n4 log n) [Squire 1995] (see [Rus03]): O(log n)
amortized delay
[PR93, HMNS01]: O(n) amortized
delay Gray code

c-optimal ideals connected symmetric
difference exchange

MWCCG: O(n4) [Gav00] O(n4 log n)



4 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

1.3. Combinatorial 0/1-polytopes. A crucial feature of this encoding via bitstrings is that it
allows to equip the combinatorial objects with a natural polytope structure. This idea is the
cornerstone of polyhedral combinatorics and has been exploited extensively in combinatorial

{1,4} {1,3} {2,3}

{2,4}

{3,4}

{1,2}

(a) (b) (c)

Figure 2. Three combinatorial 0/1-polytopes (after appropriate projections into 3-
dimensional space and under combinatorial equivalence): (a) perfect matching polytope of
the 2× 4 grid graph; (b) vertex cover polytope of the triangle graph; (c) base polytope of
the uniform matroid of 2-element subsets of the ground set {1, 2, 3, 4}.

Table 2. Examples of 0/1-polytopes that encode local change operations on combinatorial
objects through their skeleton.

Parameter Polytope Vertex set X Edges (=flips) Ref.
integer n n-dimensional

hypercube
{0, 1}n, i.e., bitstrings of
length n

flip a single bit

integer n Birkhoff polytope n× n permutation
matrices

multiplication with a
cycle

[Zie95]

integers n, k uniform matroid
base polytope

(n, k)-combinations transpositions [HK78]

connected
graph H

spanning tree
polytope

indicator vectors of
spanning trees of H

edge exchange [HK78]

graph H matching polytope indicator vectors of
matchings in H

alternating
path/cycle exchange

[Chv75]

graph H perfect matching
polytope

indicator vectors of perfect
matchings in H

alternating cycle
exchange

[Chv75]

graph H stable set polytope indicator vectors of stable
(=independent) sets in H

connected symmetric
difference exchange

[Chv75]

graph H vertex cover
polytope

indicator vectors of vertex
covers in H

connected symmetric
difference exchange

[HK78]

poset P chain polytope indicator vectors of
antichains in P

connected symmetric
difference exchange

[Sta86,
HL19]

poset P order polytope indicator vectors of ideals
in P

connected symmetric
difference exchange

[Sta86,
HL19]



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 5

optimization. Specifically, for a given set of bitstrings X ⊆ {0, 1}n, we consider the convex hull

conv(X) :=
{ ∑

x∈X
νxx

∣∣∣ νx ∈ [0, 1] for all x ∈ X and
∑

x∈X
νx = 1

}
,

which is a 0/1-polytope with vertex set X. More generally, the combinatorial structure of X

is encoded in the face structure of conv(X). In particular, the edges of the polytope conv(X)
correspond to local changes between the objects from X that are the endpoints of this edge.
For example, if X is the set of indicator vectors of spanning trees of a graph H, then the edges
of conv(X) connect pairs of spanning trees that differ in an edge exchange. Or, if X is the set
of indicator vectors of matchings of H, then the edges of conv(X) connect pairs of matchings
that differ in an alternating path or cycle. Some examples of such combinatorial 0/1-polytopes
are visualized in Figure 2, and more are listed in Table 2. Note that the dimension n quickly
exceeds 3 even for moderately large examples, so the figure shows combinatorially equivalent
projections into 3-dimensional space (where the coordinates are not 0/1 anymore).

We are mostly interested in the skeleton of the polytope under consideration, i.e., the graph
defined by its vertices and edges; see Figure 3. In this context it makes sense to refer to
bitstrings from X as vertices. As mentioned before, the edges of the skeleton capture local
change operations between the combinatorial objects that are represented by the vertices. Such
graphs are sometimes called flip graphs in the literature, where flip is a general term for a local
change operation (flip graphs can be defined without reference to polytopes).

The most notable feature of the generation algorithm presented in this paper is that the
listings of objects X generated by the algorithm correspond to a Hamilton path on the skeleton
of conv(X), i.e., a path that visits every vertex of the polytope exactly once. As a result, any
two consecutive objects in the listing differ by a local change (=flip), i.e., we obtain a Gray code.

1

2

3 5

4

{1,3,4}

{2,3,4}

{1,2,4}

{1,2,5}

{1,3,5}

{2,3,5}

{2,4,5}

{1,4,5}

{2,5}

{4,5}

{1,4}

{4,5} {1,2}

{1,3}

{2,4}
{2,3}

{1,2}

{3,4}

{4,5} {1,5}
{3,5}

{2,3}
{1,3} {3,4}

{3,5}

{1,2}

11001 01011

01101

10101 01110

11010

10110

10011

Figure 3. Skeleton of the spanning tree polytope of the diamond graph. The edges of
the skeleton are labeled by edge exchanges.



6 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

1.4. The basic algorithm. To describe our algorithm, we define for any two distinct bitstrings
x, y ∈ X ⊆ {0, 1}n the quantity λ(x, y) := max{i ∈ [n] | xi ≠ yi}. In words, λ(x, y) is the
largest index in which x and y differ. Equivalently, the longest suffix in which x and y agree has
length n− λ(x, y). For example, we have λ(1010110, 0111110) = 4 and λ(01100, 11100) = 1. For
any two bitstrings x, y ∈ {0, 1}n we define the Hamming distance of x and y as d(x, y) := |{i ∈
[n] | xi ̸= yi}|. In words, this is the number of positions in which x and y differ. For example,
we have d(1010110, 0111110) = 3 and d(01100, 11100) = 1.

With these definitions at hand, we are in position to describe our basic generation algorithm,
shown in Algorithm P as pseudocode. Algorithm P takes as input a set of bitstrings X ⊆ {0, 1}n
(possibly given implicitly; recall Table 2) and it computes a Hamilton path on the skeleton of
the 0/1-polytope conv(X), starting at an initial vertex x̃ that is also provided as input. The
current vertex x is visited in step P2, and subsequently the next vertex to be visited is computed
in steps P3 and P4. Specifically, in step P3 we compute the length β of the shortest prefix
change between x and any unvisited vertex y ∈ X − x. In step P4 we consider vertices y that
differ from x in a prefix of length β, i.e., λ(x, y) = β, and among those we select the ones with
minimum Hamming distance from x into the set N . We will show that all vertices in N are
actually unvisited. In step P5, one of the vertices y ∈ N is chosen as the next vertex to be
visited by the algorithm. If the set N contains more than one element, then we have freedom to
pick an arbitrary vertex y ∈ N . In concrete applications, one will usually equip Algorithm P
with a tiebreaking rule, which for a given set N ⊆ X and the current state of the algorithm
selects an element from N .

Algorithm P (Traversal of 0/1-polytope by shortest prefix changes). For a set X ⊆ {0, 1}n,
this algorithm greedily computes a Hamilton path on the skeleton of the 0/1-polytope conv(X),
starting from an initial vertex x̃.
P1. [Initialize] Set x← x̃.
P2. [Visit] Visit x.
P3. [Shortest prefix change] Terminate if all vertices of X have been visited. Otherwise

compute the length β of the shortest prefix change between x and any unvisited vertex y ∈
X − x, i.e., β ← miny∈X−x ∧ y unvisited λ(x, y).

P4. [Closest vertices] Compute the set N of vertices y with λ(x, y) = β of minimum Hamming
distance from x, i.e., N ← argminy∈X−x ∧ λ(x,y)=β d(x, y).

P5. [Tiebreaker+update x] Pick any vertex y ∈ N , set x← y and goto P2.

The listing of spanning trees shown in Figure 1 is a possible output of Algorithm P. The
corresponding Hamilton path on the skeleton of the spanning tree polytope is highlighted by
a dashed line in Figure 4. This figure colors the edges (x, y) of the skeleton according to
their λ-value λ(x, y), and it shows the state of the variables x, β and N through each iteration of
the algorithm. Note that in the third and fourth iteration the set N has more than one element,
so ties have to be broken. Observe how the algorithm greedily gives priority to traversing edges
with small λ-value (a short prefix change) compared to large λ-value (a long prefix change).

The following fundamental theorem is the basis of our approach.

Theorem 1. For any set X ⊆ {0, 1}n, any tiebreaking rule and any initial vertex x̃, Algorithm P
computes a Hamilton path on the skeleton of conv(X) starting at x̃.

Algorithm P has a number of striking features:

• It works for any set of bitstrings X ⊆ {0, 1}n, i.e., for any 0/1-polytope.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 7

1

2

3 5

4

{1,3,4}

{2,3,4}

{1,2,4}

{1,2,5}

{1,3,5}

{2,3,5}

{2,4,5}

{1,2}{4,5}

{2,4}
{2,3}

{1,4}

{2,5}

{1,3} {3,4}

{1,5}
{3,5}

{1,2}

{1,2}

{1,3} {3,4}
{2,3} {3,5}

{4,5}

{4,5}

λ(x, y) = 5
λ(x, y) = 4
λ(x, y) = 3
λ(x, y) = 2

11001

01101

10101 01110

11010

10110

10011

10110

01110

β

2

3
11010

11001

10101

01101

01011

10011

x N

01110

11010

11001 10011 010115

10101 011013

2 01101

4 01011

2 10011

,

,

,

{1,4,5}

01011

Figure 4. Run of Algorithm P on the skeleton from Figure 3. Edges are colored according
to λ-values. The computed Hamilton path is drawn dashed, and it corresponds to the
edge exchange Gray code from Figure 1.

• It works for any tiebreaking rule used in step P5. In an actual implementation, we would
directly compute one particular vertex from N , instead of computing all of them and then
selecting one. The reason why the set N appears in the pseudocode is to emphasize the freedom
we have in choosing a tiebreaking rule according to the needs of the application.
• It works for any initial vertex x̃, which creates room for exploitation in different applications.
• It works for any ordering of the ground set [n]. In fact, we could state the algorithm in an
even more general form and base the computation of λ on any total order of [n]. This freedom
can be very helpful in various applications. For example, when computing the spanning trees of
a graph H, different orderings of the edges of H will result in different listings of the spanning
trees (even for the same initial spanning tree and the same tiebreaking rule).
• The ordering of bitstrings from X produced by the algorithm has the so-called genlex property,
i.e., bitstrings with the same suffix appear consecutively. In other words, the algorithms visits
vertices ending with 0 before all vertices ending with 1, or vice versa, and this property is true
recursively within each block of vertices with the same suffix removed.
• The algorithm performs no polyhedral computations at all. In particular, there are no references
to the edges or higher-dimensional faces of the polytope conv(X) in the algorithm. Instead, it
relies on combinatorial properties of the bitstrings in X, namely λ-values and Hamming distances.
The fact that the resulting listing is a Hamilton path on the skeleton of the polytope conv(X) is
a consequence of these combinatorial properties, but not built into the algorithm.
• The algorithm computes a Hamilton path on the skeleton of the 0/1-polytope conv(X), i.e.,
we obtain a Gray code listing of the objects encoded by X with closeness guarantees between
consecutive objects; recall Table 2. Observe that the algorithm does not traverse arbitrary



8 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

edges of the 0/1-polytope, but only edges with minimum Hamming distance (as mentioned
before, the algorithm does not even ‘know’ that these are polytope edges). As a consequence,
these closeness guarantees can be strengthened considerably in many cases. For example, in the
matching polytope any two matchings that differ in an alternating path or cycle are adjacent, but
Algorithm P will only traverse edges corresponding to alternating paths of length ≤ 3. Similarly,
in the Birkhoff polytope any two permutations that differ in a single cycle are adjacent, but
Algorithm P will only traverse edges corresponding to cycles of length 2 (i.e., transpositions).
• The computation of β in step P3 requires the qualification ‘y unvisited’, which seems to indicate
that we need to store all previously visited vertices, which would require exponential space and
would therefore be very detrimental. However, we show that with some simple additional data
structures, we can make the algorithm history-free, so no previously visited vertices need to be
stored at all, but instead the algorithm uses only O(n) extra space (in addition to the input).
This history-free implementation of Algorithm P is described as Algorithm P* in Section 6.2.
• The algorithm is straightforward to implement with few lines of code.
• As we shall explain in the next section, the computations in steps P3 and P4 can be done by
solving one or more instances of a linear optimization problem over X. Consequently, we can
use any optimization algorithm as a black box inside Algorithm P (or its history-free variant).
The running time of the generation algorithm then depends on the time needed to solve the
optimization problem, and the resulting delay is only by a log n factor larger than the time
needed to solve the optimization problem. Specificially, the log n factor comes from solving
several instances of the optimization problem, and doing binary search.
• Algorithm P thus provides a general and automatic way to exploit an optimization algorithm
for the purpose of generation. With each new optimization algorithm we automatically obtain
a baseline against which to compare any new generation algorithm for that particular class of
objects. Also, the delays for concrete problems listed in Table 1 obtained from our work may
improve as soon as someone finds an improved optimization algorithm.

We also mention the following two shortcomings of Algorithm P:
• For unstructured classes of objects, for example the set of all bitstrings of length n, or the
set of all n × n permutation matrices, there are sometimes faster (often loopless) and more
direct generation methods available than what we obtain via optimization. While Algorithm P
still works in those cases, its performance shines primarily for classes of objects that arise from
certain constraints, for example from a graph, a matroid, a poset, or from a cost function.
• In general, Algorithm P does not compute a Hamilton cycle, but only a Hamilton path on the
0/1-polytope (cf. Section 1.7 below). There are classes of objects and choices of the tiebreaking
rule so that the last vertex of the computed path is adjacent to the first one, but these situations
are out of our control in general. This is because the algorithm operates entirely locally on the
skeleton and ‘forgets’ the location of the initial vertex x̃.

1.5. Reduction to classical linear optimization. A classical problem in combinatorial
optimization, which includes for example minimum spanning tree, maximum weight (perfect)
matching, maximum stable set, minimum vertex cover and many others, is the linear optimization
problem, defined as follows:

LO Given a set X ⊆ {0, 1}n and a weight vector w ∈ Rn, compute an element in

N := argmin
y∈X

w · y,

or decide that this problem is infeasible, i.e., N = ∅.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 9

The key insight of our paper is that the computation of β in step P3 and of the set N in
step P4 of Algorithm P can be achieved by solving one of more instances of the following variant
of the problem LO, which we refer to as linear optimization with prescription.
LOP Given a set X ⊆ {0, 1}n, a weight vector w ∈ Rn, and disjoint sets P0, P1 ⊆ [n], compute

an element in

N := argmin
y∈X ∧ yP0 =0 ∧ yP1 =1

w · y,

or decide that this problem is infeasible, i.e., N = ∅.
The notation yPb

= b for b ∈ {0, 1} is a shorthand for yi = b for all i ∈ Pb. In words, the value
of y is prescribed to be 0 or 1 at the coordinates in P0 and P1, respectively.

We explain the reduction to the problem LOP for the computation of the set

N := argmin
y∈X−x ∧ λ(x,y)=β

d(x, y)

in step P4 of Algorithm P. Given x and β ∈ [n], we define the weight vector

wi :=

+1 if xi = 0,

−1 if xi = 1,
(1)

and the sets

Pb := {β | xβ = 1− b} ∪ {i > β | xi = b} for b ∈ {0, 1},

and we use w and P0, P1 as input for the optimization problem LOP. The definition of P0, P1
ensures that all feasible y ∈ X satisfy yi = xi for i > β and yβ = 1 − xβ, which ensures that
they all satisfy λ(x, y) = β, in particular y ≠ x, i.e., y ∈ X − x. Furthermore, the definition of
w implies that d(x, y) = w · (y − x), and since x is fixed, minimization of d(x, y) is the same as
minimization of w · y. We consequently obtain that

N = argmin
y∈X−x ∧ λ(x,y)=β

d(x, y) = argmin
y∈X ∧ yP0 =0 ∧ yP1 =1

w · y.

The computation of β in step P3 of our algorithm can be done similarly, however with an
extra ingredient, namely binary search. The binary search causes the log n factor in the delay.
Specifically, we obtain that if problem LOP over X can be solved in time tLOP, then Algorithm P
runs with delay O(tLOP log n) (Theorem 21). We also provide a variant of this reduction for
generating only the elements in X that are optimal w.r.t. some cost vector c ∈ Zn (Theorem 25).

In many cases (e.g., spanning trees, matchings, perfect matchings, etc.) the problem LOP with
weights w as in (1) reduces to the problem LO directly (by removing or contracting prescribed
edges). In those cases we obtain the same results as before, but with tLO instead of tLOP. In fact,
by weight amplification the problem LOP can always be reduced to the problem LO (Lemma 27),
albeit at the expense of increasing the weights, which may worsen the running time of the
optimization algorithm.

1.6. Applications. It turns out that Algorithm P is very versatile, and allows efficient generation
of a large variety of combinatorial objects based on graphs, matroids, posets and polytopes in
Gray code order. Table 1 lists these results in condensed form, and in the following we comment
on the most important entries in the table.



10 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

1.6.1. Vertex enumeration of 0/1-polytopes. The vertex enumeration problem for polytopes is
fundamental in discrete and computational geometry; see the surveys [MR80] and [Dye83], and
the more recent work [CHJ91, BEGM09, BEGT11, EM20].1 Given a linear system Ax ≤ b of
inequalities, where A ∈ Rm×n and b ∈ Rm, the problem is to generate all vertices of the polytope
P := {x ∈ Rn | Ax ≤ b}. For general polytopes, this problem can be solved by the double
description method [MRTT53], or by the reverse search method due Avis and Fukuda [AF92],
with its subsequent improvement [Avi00]. For the special case where P is a 0/1-polytope, i.e.,
all vertex coordinates are from {0, 1}, Bussieck and Lübbecke [BL98] described an algorithm
for generating the vertices of P with delay O(tLP n), where tLP is the time needed to solve the
linear program (LP) min{w · x | Ax ≤ b}. Furthermore, the space required by their algorithm
is the space needed to solve the LP. Behle and Eisenbrand [BE07] described an algorithm for
vertex enumeration of 0/1-polytopes that uses binary decision diagrams, which performs well in
practice, but requires exponential space in the worst case.

Algorithm P improves upon Bussieck and Lübbecke’s algorithm in that the delay is reduced
from O(tLP n) to O(tLP log n) per generated vertex (Corollary 29). As an additional feature, the
vertices are visited in the order of a Hamilton path on the polytope’s skeleton, whereas the earlier
algorithm does not have this property. The space required by our algorithm is only the space
needed to solve the LP. We can also generate all vertices that are c-optimal w.r.t. some arbitrary
integer-valued cost vector c ∈ Zn, with delay O(tLP poly(log n)) per vertex (Corollary 30).

1.6.2. Bases and independent sets in matroids. Algorithm P allows generating the bases of
any matroid, by computing a Hamilton path on the base polytope. The delay is O(tLO log n),
where n is the number of elements in the matroid, and tLO is the time to solve the linear
optimization problem (problem LO defined in Section 1.5) for the bases of the matroid. It
is the first polynomial delay algorithm known for the weighted variant of the problem with
cost vector c. Our algorithm can be specialized to generate bases of a graphic matroid, i.e.,
spanning trees of a graph (Corollaries 31 and 32), or bases of the uniform matroid, i.e., fixed-size
subsets of an n-element ground set, also known as combinations. Analogous statements hold for
independent sets of a matroid, and the corresponding specialization to the graphic case, namely
forests of a graph.

1.6.3. More graph objects. We provide the first polynomial delay algorithms for generating
matchings, maximum matchings, and c-optimal matchings in general graphs (Corollaries 33, 34,
and 35, respectively). The obtained listings correspond to a Hamilton path on the matching
polytope. We also provide the first polynomial delay algorithms for generating vertex covers,
minimum vertex covers, and c-optimal vertex covers in bipartite graphs. The generated listings
correspond to a Hamilton path on the vertex cover polytope. The space required by our
algorithms is only the space required for solving the corresponding optimization problems,
i.e., polynomial in the size of the graph. As the complement of a vertex cover is a stable
(=independent) set, we also obtain efficient algorithms for generating stable sets, maximum
stable sets and c-optimal stable sets in bipartite graphs, by traversing the stable set polytope.

1.6.4. Poset objects. We provide the first polynomial delay algorithms for generating antichains,
maximum antichains, c-optimal antichains, and c-optimal ideals of a poset. The listings of
objects correspond to Hamilton paths on the chain polytope and order polytope, respectively.

1Throughout this paper we use the term ‘generation’ instead of ‘enumeration’, but since ‘vertex enumeration’
is a standard term in the polytope community, we stick to it here.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 11

The space required by our algorithms is the space for solving the corresponding optimization
problems, i.e., polynomial in the size of the poset.

1.7. Related work. Theorem 1 implies that for any 0/1-polytope P and any of its vertices, there
is a Hamilton path on the skeleton of P starting at that vertex. Naddef and Pulleyblank [NP84]
proved a considerable strengthening of this result. Specifically, they showed that the skeleton
of any 0/1-polytope is either a hypercube and therefore Hamilton-laceable, or it is Hamilton-
connected. A graph is Hamilton-connected if it admits a Hamilton path between any two distinct
vertices, and a bipartite graph is Hamilton-laceable if it admits a Hamilton path between any two
vertices from distinct partition classes. The Naddef-Pulleyblank construction is inductive, but it
does not translate into an efficient algorithm, as the size of the skeleton is typically exponential;
recall Table 2.

Conte, Grossi, Marino, Uno and Versari [CGM+22] recently presented a modification of reverse
search called proximity search, which yields polynomial delay algorithms for generating several
classes of objects defined by inclusion-maximal subgraphs of a given graph, specifically maximal
bipartite subgraphs, maximal degenerate subgraphs, maximal induced chordal subgraphs etc.
Their approach is based on traversing a suitable defined low-degree flip graph on top of the graph
objects that is then traversed by backtracking. A disadvantage of their approach is that it requires
exponential space to store previously visited objects along the flip graph, unlike Algorithm P
which can be implemented with linear space. Also, there is no polyhedral interpretation of their
method, in particular the generated listings of objects are not Gray codes.

1.8. Outline of this paper. In Section 2 we collect some notations that will be used throughout
this paper. In Section 3 we present a simple greedy algorithm for computing a Hamilton path in
a graph whose vertex set is a set of bitstrings. In Section 4 we consider Hamilton paths with
special properties that this algorithm can compute successfully. In Section 5 we introduce a class
of graphs called prefix graphs which admit such Hamilton paths, and we provide a history-free
implementation of the basic greedy algorithm for computing a Hamilton path in those graphs. In
Section 6 we show that skeleta of 0/1-polytopes are prefix graphs, and we specialize the earlier
results and algorithms to the case of 0/1-polytopes. We also reduce the computational problems
for our history-free algorithm to instances of linear optimization with or without prescription.
The results listed in the last column of Table 1 are derived from our general theorems in Section 7.
In Section 8, we discuss the relation between our generation framework and the one presented
in [HHMW22], and we conclude in Section 9 with some open questions.

2. Preliminaries

For a graph G = (X, E) and a vertex x ∈ X we write E(x) for the set of neighbors of x in G.
We write ε for the empty bitstring. Also, for any bitstring x we write x for the complemented

string. For any two bitstrings x and y we write xy for the concatenation of x and y. Given a
sequence L = x1, . . . , xℓ of bitstrings and a bitstring y, we also define Ly := x1y, . . . , xℓy. For
any nonempty bitstring x we write x− for the string obtained from x by deleting the last bit.
Furthermore, for a set X ⊆ {0, 1}n we define X− := {x− | x ∈ X} ⊆ {0, 1}n−1 and for any
sequence L = x1, . . . , xℓ of bitstrings we define L− := x−

1 , . . . , x−
ℓ . For any set X ⊆ {0, 1}n and

b ∈ {0, 1} we define Xb := {x ∈ {0, 1} | xn = b}. Similarly, for any sequence L of bitstrings of
length n and b ∈ {0, 1} we write Lb for the subsequence of strings in L that end with b.

For any predicate P and any real-valued function f defined on the set of objects X satisfying
the predicate P , we write argmin[P (x) | f(x)] := argminP (x) f(x) for the minimizers of f on X.
This notation without subscripts is convenient for us, as the predicates we need are complicated,



12 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

so printing these long expressions as subscripts would make the formulas too unwieldy. Our new
notation is typographically ‘dual’ to the minimum values min{f(x) | P (x)}.

3. Binary graphs and a simple greedy algorithm

A binary graph is a graph G = (X, E) such that X ⊆ {0, 1}n for some integer n. In our
applications, the graph G is typically given implicitly, using a description of size polynomial in n,
whereas the size of G will be exponential in n. Examples for such graphs are the skeletons of
the polytopes listed in Table 2, which are described by the parameter listed in the first column.
In the setting of Gray codes, one routinely obtains binary graphs by taking X as the set of
binary strings that encodes some class of combinatorial objects, and by taking E as the pairs
of objects that differ in some local changes, for example by a certain Hamming distance or by
certain operations on the bitstrings like transpositions, substring shifts, or reversals.

In the following we introduce a simple greedy algorithm to compute a Hamilton path in any
binary graph G = (X, E), where X ⊆ {0, 1}n.

Algorithm G starts at some initial vertex x̃ ∈ X, and then repeatedly moves from the current
vertex x to a neighboring vertex y that has not been visited before and that minimizes λ(x, y)
(recall the definition from Section 1.4), i.e., the algorithm greedily minimizes the lengths of the
modified prefixes. If all neighbors of x have been visited, the algorithm terminates. By definition,
the algorithm never visits a vertex twice, i.e., it always computes a path in G. However, it might
terminate before having visited all vertices, i.e., the computed path may not be a Hamilton path.

Algorithm G (Shortest prefix changes). This algorithm attempts to greedily compute a
Hamilton path in a binary graph G = (X, E), where X ⊆ {0, 1}n, starting from an initial
vertex x̃.
G1. [Initialize] Set x← x̃.
G2. [Visit] Visit x.
G3. [Shortest prefix neighbors] Compute the set N of unvisited neighbors y of x in G that

minimize λ(x, y), i.e., N ← argmin[y ∈ E(x) ∧ y unvisited | λ(x, y)]. Terminate if N = ∅.
G4. [Tiebreaker+update x] Pick any vertex y ∈ N , set x← y and goto G2.

If the set N of unvisited neighbors encountered in step G4 contains more than one element,
then we have freedom to pick an arbitrary vertex y ∈ N . A tiebreaking rule may involve
lexicographic comparisons between vertices in N , or their Hamming distance from x.

Note that Algorithm G operates completely locally based on the current neighborhood and
never uses global information. Also note that a naive implementation of Algorithm G may
require exponential space to maintain the list of previously visited vertices, in order to be able
to compute the set N in step G3. We will show that in many interesting cases, we can make the
algorithm history-free, i.e., by introducing suitable additional data structures, we can entirely
avoid storing any previously visited vertices.

4. Genlex order

In this section, we provide a simple sufficient condition for when Algorithm G succeeds to
compute a Hamilton path in a binary graph. Specifically, these are binary graphs that admit a
Hamilton path satisfying a certain ordering property. We also establish important optimality
properties for such orderings.

Let X ⊆ {0, 1}n. An ordering of X is a sequence L that contains every element of X exactly
once. Furthermore, an ordering L of X is called genlex, if all bitstrings with the same suffix



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 13

appear consecutively in L. An equivalent recursive definition of genlex order is as follows: The
ordering L is genlex, if L = L0, L1 or L = L1, L0, and the sequences L0− and L1− are in genlex
order.

Colexicographic order is a special case of genlex order in which only the case L = L0, L1

occurs, i.e., all strings with suffix 0x appear before all strings with suffix 1x, for any x ∈ {0, 1}k.
In the literature, genlex orderings are sometimes referred to as suffix-partitioned [Wal03]. Our
notion of genlex ordering is with respect to suffixes, but of course it could also be defined with
respect to prefixes instead, generalizing lexicographic order, and such an ordering is sometimes
called prefix-partitioned in the literature. Unlike lexicographic order or colexicographic order,
which is unique for a given X, there can be many distinct genlex orderings for X.

We associate any ordering L = x1, . . . , xℓ of X with a cost, defined by

c(L) :=
∑

i=1,...,ℓ−1
λ(xi, xi+1), (2)

which is the sum of lengths of prefixes that get modified in the ordering. Genlex orderings are
characterized by the property that they minimize this cost among all possible orderings.

Lemma 2. Let L and L′ be two orderings of X ⊆ {0, 1}n. If L is genlex, then we have
c(L) ≤ c(L′). This inequality is strict if L′ is not genlex.

Lemma 2 implies in particular that all genlex orderings of X have the same cost.

Proof. Let L′ be any ordering, and assume w.l.o.g. that L′ = A0, B1, C0, D, where the sequences
A, B, C are nonempty, but D may be empty, i.e., the last bit changes at least twice in L.
Furthermore, we choose the subsequence C maximally, i.e., if D is nonempty, then its first
bitstring ends with 1. Consider the sequence L := A0, C0, B1, D, obtained from L′ by swapping
the order of the blocks B1 and C0. If D is empty, then c(L) < c(L′), as the transition to the
first bitstring of C0 costs n in L′ but strictly less in L. If D is nonempty, then we also have
c(L) < c(L′), as the transition to the first bitstring of D costs n in L′ but strictly less in L.
We can repeatedly apply such exchange operations to reduce the total cost until the resulting
ordering is genlex.

Note that if L is a genlex ordering, then c(L) = c(L0−) + c(L1−) + n, where the +n comes
from the transition between the two blocks L0 and L1. By induction this implies that all genlex
orderings have the same cost.

Combining these two arguments proves the lemma. □

The next two lemmas capture further important properties of genlex orderings.

Lemma 3. Let L = x1, . . . , xℓ be a genlex ordering of X ⊆ {0, 1}n. For any two indices i, j ∈ [ℓ]
with i < j we have λ(xi, xi+1) ≤ λ(xi, xj).

Proof. For the sake of contradiction, suppose that there are indices i, j ∈ [ℓ] with i < j such that
λ(xi, xi+1) > λ(xi, xj). Thus, the longest common suffix s of xi and xj has length n− λ(xi, xj).
Similarly, the longest common suffix of xi and xi+1 has length n− λ(xi, xi+1) < n− λ(xi, xj).
In particular, s is not a suffix of xi+1. Consequently, the bitstrings with suffix s do not appear
consecutively in L, a contradiction. □

Lemma 4. Let L = x1, . . . , xℓ be a genlex ordering of X ⊆ {0, 1}n. For any three indices
i, j, k ∈ [ℓ] with i < j < k we have λ(xi, xj) ̸= λ(xj , xk).

Proof. For the sake of contradiction, suppose that there are indices i, j, k ∈ [ℓ] with i < j < k such
that λ(xi, xj) = λ(xj , xk). Thus, xi, xj and xk have a common suffix s of length n− λ(xi, xj) =



14 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

n− λ(xj , xk). Furthermore, xi and xj disagree in the bit to the left of this suffix (at position
λ(xi, xj)− 1 = λ(xj , xk)− 1), and xj and xk disagree in this bit, which implies that xi and xk

agree in this bit b. But this means that the bitstrings with suffix bs do not appear consecutively
in L, a contradiction. □

We now establish that Algorithm G presented in the previous section, equipped with a suitable
tiebreaking rule, generates any genlex Hamilton path. This provides a simple sufficient condition
for when the algorithm succeeds to compute a Hamilton path in a given binary graph. Note
that any ordering L = x1, . . . , xℓ of X ⊆ {0, 1}n defines a tiebreaking rule τL that for any given
set N ⊆ X returns the element from N that appears first in L. Formally, if N has size s then
there are indices i1 < · · · < is such that N = {xi1 , . . . , xis}, and we define τL(N) := xi1 .

Theorem 5. Let G = (X, E) be a binary graph that admits a genlex Hamilton path L = x1, . . . , xℓ.
Then Algorithm G with tiebreaking rule τL and initial vertex x̃ := x1 computes the path L.

Proof. We prove by induction that for all i = 1, . . . , ℓ, in the ith iteration of Algorithm G it will
visit the vertex xi. For i = 1 this is clear by the initialization with x̃ := x1. For the induction
step let i > 1. The vertex xi is computed in lines G3 and G4 at the end of the (i− 1)st iteration
of the algorithm. At this point, the visited vertices are x1, . . . , xi−1 in this order, i.e., xi is
unvisited. Furthermore, xi is a neighbor of xi−1 in G by the assumption that L is a Hamilton
path, i.e., xi ∈ E(xi−1). Furthermore, by Lemma 3, xi minimizes λ(xi−1, y) among all unvisited
neighbors y of xi−1. Consequently, we have xi ∈ N , i.e., xi is contained in the set N computed
in step G3. As N contains only unvisited vertices, the tiebreaking rule τL indeed selects x← xi

as the next vertex in step G4. □

Remark 6. Williams [Wil13] pioneered the greedy method as a general paradigm to reinterpret
known Gray codes and to derive new ones. Specifically, in his paper he found greedy inter-
pretations of the classical binary reflected Gray code, the Steinhaus-Johnson-Trotter listing
of permutations by adjacent transpositions, the Ord-Smith/Zaks [Ord67, Zak84] ordering of
permutations by prefix reversals, and for the rotation Gray code for binary trees due to Lucas,
Roelants van Baronaigien, and Ruskey [LRvBR93].

The greedy method has also been very useful in discovering new Gray codes for (gener-
alized) permutations [SW16, CSW21], for spanning trees of special graphs [CGS21], and for
spanning trees of arbitrary graphs and more generally bases of any matroid [MMW22]. Also,
the permutation-based framework for combinatorial generation proposed by Hartung, Hoang,
Mütze and Williams [HHMW22] relies on a simple greedy algorithm.

Theorem 5 now provides us with an explanation for the success of the greedy method.
Furthermore, the recent survey [Müt22] lists a large number of Gray codes from the literature
that have the genlex property (there are more than 50 occurrences of the word ‘genlex’), and all
of those can now be interpreted as the result of a simple algorithm that greedily minimizes the
lengths of modified prefixes in each step.

Remark 7. Admittedly, one can consider the proof of Theorem 5 as ‘cheating’, as it builds
knowledge about L into the tiebreaking rule τL of the algorithm, knowledge that one typically
does not have when the goal is to come up with an algorithm to produce a listing L in the first
place. Consequently, in practice the challenge is to come up with a tiebreaking rule that uses
only local information about the neighborhood of the current vertex x and that can be computed
efficiently. In some cases, discussed in the next section, we are in the even better position that
Algorithm G works for any choice of tiebreaking rule, which gives dramatic additional flexibility.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 15

5. Prefix graphs and history-free implementation

In this section, we exhibit a class of binary graphs for which Algorithm G succeeds for any
tiebreaking rule, and for any choice of initial vertex x̃. Furthermore, for these binary graphs
we can implement Algorithm G in a history-free way, i.e., without maintaining the list of all
previously visited vertices, by maintaining some simple additional data structures. Furthermore,
we will formulate two auxiliary problems that, when solved efficiently, imply that Algorithm G
runs with short delay between consecutively visited vertices. In later sections, we will solve these
auxiliary problems by combinatorial optimization methods.

5.1. Prefix graphs. For a binary graph G = (X, E), where X ⊆ {0, 1}n, and for b ∈ {0, 1}
we define Gb− := (Xb−, Eb−) with Eb− := {(x, y) | x, y ∈ Xb− and (xb, yb) ∈ E}. We say
that G = (X, E) is a prefix graph if X = ∅, or n = 0 and X = {ε}, or n > 0 and the following
two conditions hold:

(p1) G0− and G1− are prefix graphs;
(p2) If X0 and X1 are both nonempty, then for any b ∈ {0, 1} and for every vertex x ∈ Xb

there exists a vertex y ∈ Xb such that (x, y) ∈ E.
Even though the condition (p2) may seem rather restrictive, we will see that many interesting

binary graphs are indeed prefix graphs. In particular, the skeleton of any 0/1-polytope is a
prefix graph; see Lemma 15 below.

Lemma 8. For any prefix graph G = (X, E) and any vertex x̃ ∈ X, there is a genlex Hamilton
path in G starting at x̃.

Proof. We argue by induction on n. The base case n = 0 holds trivially. For the induction
step we assume that n > 0. We assume without loss of generality that x̃ has last bit 0, as the
other case is symmetric. By this assumption X0 and G0− are nonempty. From condition (p1) of
prefix graphs we obtain that G0− is a prefix graph, so by induction there is a genlex Hamilton
path L in G0− starting at x̃−. Let x′ be the last vertex of L. If X1 is empty, then L0 is a genlex
Hamilton path in G and we are done. Otherwise, G1− is nonempty. From condition (p1) we
obtain that G1− is a prefix graph. Furthermore, from condition (p2) we obtain that there is
a vertex ỹ ∈ X1 such that (x′0, ỹ) ∈ E. Therefore, by induction there is a genlex Hamilton
path M in G1− starting at ỹ−. The concatenation L0, M1 is the desired genlex Hamilton path
in G. □

Our next theorem strengthens Lemma 8 and makes it algorithmic. This fundamental theorem
asserts that Algorithm G succeeds to compute a Hamilton path on any prefix graph, regardless
of the choice of tiebreaking rule, and regardless of the choice of initial vertex. The importance of
this result can hardly be overstated, as it gives us dramatic flexibility in many applications.

Theorem 9. Let G = (X, E) be a prefix graph. For any tiebreaking rule and any initial vertex x̃,
Algorithm G computes a genlex Hamilton path on G starting at x̃.

The proof follows the same strategy as the proof of Lemma 8.

Proof. We argue by induction on n. The base case n = 0 holds trivially. For the induction
step we assume that n > 0. We assume without loss of generality that x̃ has last bit 0, as the
other case is symmetric. By this assumption X0 and G0− are nonempty. From condition (p1) of
prefix graphs we obtain that G0− is a prefix graph, so by induction Algorithm G with input
G0− computes a genlex Hamilton path L in G0− starting at x̃−. Let x′ be the last vertex of L.
Observe that Algorithm G with input G produces the path L0, whose last vertex is x′0, and we



16 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

11100

10110

01110

11010

11001

01101

10101

10011

01011

00111

L

0

0

0

0

0

0

0

0

0

0

1 1 1

1
1

1

1

11

1
1

1

1

1

1

1

1

1

1

0

0

0

0

00111010111001110101011011100111010011101011011100

10110101100111101100 0011110110100110 0111

100 110 010

10 01 11

011101 111001

10

ε

00

T (L)

(a) (b) (c)

Figure 5. (a) A genlex ordering L of all bitstrings of length 5 with three 1s. (b) The
binary tree structure in L. (c) The corresponding suffix tree T (L).

now consider the iteration of the algorithm where the vertex x′0 is visited. After visiting x′0 all
vertices of X0 have been visited. If X1 is empty, then the set N computed in step G3 is empty,
the algorithm terminates and we are done. Otherwise, G1− is nonempty. From condition (p1)
we obtain that G1− is a prefix graph. Furthermore, from condition (p2) we obtain that there is
a vertex y ∈ X1 such that (x′0, y) ∈ E, i.e., we have y ∈ E(x′0). Furthermore, y is unvisited,
as its last bit equals 1 and therefore y ∈ N , implying that N ̸= ∅. Consequently in step G4
the algorithm moves to some vertex ỹ ∈ N ⊆ X1, which is true regardless of the tiebreaking
rule being used. We know by induction that Algorithm G with input G1− computes a genlex
Hamilton path M in G1− starting at ỹ−. From this we conclude that Algorithm G with input G

computes the genlex Hamilton path L0, M1. □

5.2. Suffix trees and branchings. We now describe how to equip Algorithm G with additional
data structures so that it does not need to store any previously visited vertices.

The key observation is that the suffixes of any genlex ordering form binary tree structure.
Formally, let L be a genlex ordering of a set X ⊆ {0, 1}n. The suffix tree T (L) is an ordered
rooted tree whose vertices are all possible suffixes of X, with the following adjacencies; see
Figure 5:
• the empty suffix ε is the root of T (L);
• for every suffix s of length k, its children in T (L) are the suffixes of length k + 1 that have s

as a common suffix, and the order of children from left to right corresponds to the order of
the suffixes in L.

Note that the set of leaves of T (L) equals X, and the sequence of leaves in T (L) from left to
right equals L. Furthermore, every vertex in T (L) has either one or two children.

When producing a genlex ordering L, Algorithm G traverses the leaves of the suffix tree T (L).
To obtain a history-free implementation, it is enough to store information about the current leaf
and the branchings on the path from that leaf to the root. Formally, for any x ∈ X we define

B(x) := {λ(x, y) | y ∈ X − x},

and we refer to B(x) as the set of branchings of x. This definition is independent of L and hence
of T (L). Note however that in any suffix tree T (L) and for any leaf x ∈ X, we have i ∈ B(x) if



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 17

00111010111001110101011011100111010011101011011100

10110101100111101100 0011110110100110 0111

100 110 010

10 01 11

011101 111001

10

ε

00

T (L)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

B(x3) = {2, 3, 4, 5}
BL(x3) = {3, 5}

L

2

3

4

5

Figure 6. Illustration of branchings and unseen branchings for the vertex x3 in the suffix
tree from Figure 5.

and only if the node in distance i from x in T (L) (which has depth n− i in the tree) has two
children; see Figure 6.

For a genlex ordering L = x1, . . . , xℓ of X and any i ∈ [ℓ], we define the set of unseen
branchings of xi w.r.t. L as

BL(xi) := {λ(xi, xj) | i < j ≤ ℓ} ⊆ B(xi). (3)

These are branchings in T (L) that lead to children that are visited after xi in L; see Figure 6.
The next lemma states two important properties about the quantities defined before.

Lemma 10. Let L = x1, . . . , xℓ be a genlex ordering of X ⊆ {0, 1}n. For every 1 ≤ i < ℓ the
minimum unseen branching β := min BL(xi) satisfies the following properties:

(i) for every xj ∈ X − xi with λ(xi, xj) = β we have j > i;
(ii) we have BL(xi) \ {β} = BL(xi+1) \ [β].

Proof. To prove (i), suppose for the sake of contradiction that there is some xj ∈ X − xi

with λ(xi, xj) = β and j < i. Then we have j < i < i + 1 with λ(xj , xi) = λ(xi, xi+1) = β,
contradicting Lemma 4.

To prove (ii), let j > i + 1 be such that λ(xi+1, xj) > λ(xi, xi+1) = β. It follows that
the longest common suffix of xi and xi+1 properly contain the longest common suffix of xi+1
and xj . Hence, the longest common suffix of xi+1 and xj is also the longest common suffix
of xi and xj . Consequently, we have λ(xi, xj) = λ(xi+1, xj) for every j > i + 1 such that
λ(xi+1, xj) > λ(xi, xi+1) = β. Also note that β /∈ BL(xi+1), as otherwise there would be
j > i + 1 such that λ(xi, xi+1) = λ(xi+1, xj), contradicting Lemma 4. Combining these two
observations proves (ii). □

5.3. History-free implementation. An interval is a subset of consecutive natural numbers.
For any interval I ⊆ [n] we define

λI(x, y) :=

λ(x, y) if λ(x, y) ∈ I,

∞ otherwise.



18 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

1 2 3 4 5

1 2 3 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

4
4

3

5

3

2

4

2

3
00111010111001110101011011100111010011101011011100

10110101100111101100 0011110110100110 0111

U β
T (L)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

L

1

2

3

4

5

6

7

8

9

10

2

100 110 010

10 01 11

011101 111001

10

ε

00

Figure 7. The state of the variables U and β of Algorithm G* while traversing the genlex
tree from Figure 5. Each interval I on the stack U is indicated by a box. Every branching
is highlighted by a shaded square, with unseen branchings printed black and the others
grayed out. Furthermore, the minimum unseen branching in each interval is circled.

Note that we have λ[n](x, y) = λ(x, y).
To make Algorithm G history-free, we need to get rid of the qualification ‘y unvisited’ in the

computation of the set N in line G3. This is achieved in Algorithm G* stated below, which
takes as input a binary graph G = (X, E), where X ⊆ {0, 1}n. The algorithm keeps track of the
unseen branchings of the current vertex x by maintaining a stack U of disjoint intervals that
cover all unseen branchings of x, with the property that each interval I on the stack contains
at least one unseen branching of x. The intervals appear on the stack U from left (top of the
stack) to right (bottom of the stack), and for each interval I on the stack, the variable βI stores
the minimum unseen branching in I, i.e., we have βI = min{λI(x, y) | y ∈ X − x}. Note here
Lemma 10 (i), so no extra qualification ‘y unvisited’ is needed in this minimization. There might
be more than one unseen branching in I, but only the minimum one is stored in βI .

Algorithm G* (History-free shortest prefix changes). This algorithm attempts to greedily
compute a Hamilton path in a binary graph G = (X, E), where X ⊆ {0, 1}n, starting from
an initial vertex x̃.
G1. [Initialize] Set x← x̃ and call branching([n]).
G2. [Visit] Visit x.
G3. [Min. unseen branching] Terminate if U is empty. Otherwise set I←U.pop() and β ← βI .
G4. [Shortest prefix neighbors] Compute the set N of neighbors y of x in G with λ(x, y) = β,

i.e., N ← {y ∈ E(x) | λ(x, y) = β}.
G5. [Tiebreaker+update x] Pick any vertex y ∈ N and set x← y.
G6. [Update U ] Call branching(I \ [β]) and branching([β − 1]), and goto G2.

Algorithm G* calls the following auxiliary function to update the stack U for a given interval I.
This function reads the current vertex x and if the given interval I contains an unseen branching
it modifies the variables βI and U .

branching(I): Compute β ← min{λI(x, y) | y ∈ X − x}. If β <∞ set βI ← β and U.push(I).



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 19

The stack U is initialized in step G1, the leftmost interval I containing the minimum unseen
branching βI of the current vertex x is retrieved from the stack in step G3, and the stack is
updated in step G6. The correctness of these updates follows from Lemma 10 (i)+(ii).

It remains to argue that the set N of neighbors computed in step G3 of Algorithm G is the
same as the set N computed in step G4 of Algorithm G*. Indeed, we have

N = argmin[y ∈ E(x) ∧ y unvisited | λ(x, y)]
= {y ∈ E(x) ∧ y unvisited | λ(x, y) = β}
= {y ∈ E(x) | λ(x, y) = β},

where the quantity β is the minimum unseen branching of the current vertex x defined in line G3
of Algorithm G*, and in the last step we use Lemma 10 (i).

Summarizing these observations we obtain the following result.

Theorem 11. Let G = (X, E) be a binary graph that admits a genlex Hamilton path L =
x1, . . . , xℓ. Then Algorithm G* with tiebreaking rule τL and initial vertex x̃ := x1 produces the
same output as Algorithm G, namely the path L.

Combining this result with Theorem 9, we obtain the following.

Theorem 12. Let G = (X, E) be a prefix graph. For any tiebreaking rule and any initial
vertex x̃, Algorithm G* computes a genlex Hamilton path on G starting at x̃.

5.4. Two auxiliary problems. From the pseudocode of Algorithm G* we can extract the
following two computational problems, which, if solved efficiently, directly lead to an efficient
algorithm for computing a Hamilton path in any prefix graph:
A Given a set X ⊆ {0, 1}n, an element x ∈ X and an interval I ⊆ [n], compute min{λI(x, y) |

y ∈ X − x}.
B Given a binary graph G = (X, E), where X ⊆ {0, 1}n, an element x ∈ X and an integer β ∈

[n] with N := {y ∈ E(x) | λ(x, y) = β} ≠ ∅, compute an element in N .
We note that in both problems, the set X of bitstrings may be given implicitly via some other

parameter; recall Table 2.

Theorem 13. Let G = (X, E) be a prefix graph, and suppose that problems A and B can be
solved in time tA and tB, respectively. Then for any tiebreaking rule and any initial vertex x̃,
Algorithm G* computes a genlex Hamilton path on G starting at x̃ with delay O(tA + tB).

The initialization time of Algorithm G* is O(tA), which is majorized by the delay O(tA + tB),
and the required space is the sum of the space needed to solve problems A and B.

Proof. This is immediate from Theorem 12 and the fact that each iteration of Algorithm G*

consists of solving constantly many instances of problems A and B. □

6. A bridge to combinatorial optimization

In this section, we consider 0/1-polytopes, i.e., polytopes that arise as the convex hull conv(X)
of a set of binary strings X ⊆ {0, 1}n. We first show that the skeleton of any 0/1-polytope is a
prefix graph. Furthermore, we show that problems A and B reduce to solving a particular linear
optimization problem on the polytope (recall Section 1.5). Consequently, if we can solve this
optimization problem efficiently, then we obtain an efficient algorithm for computing a Hamilton
path on the skeleton of the polytope.



20 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

6.1. Skeleta of 0/1-polytopes are prefix graphs. Recall the definition of Hamming dis-
tance d(x, y) from Section 1.4.

Lemma 14 ([NP81, Proposition 2.3]). Let P be a 0/1-polytope and let G = (X, E) with
X ⊆ {0, 1}n be its skeleton. Suppose that X0 and X1 are both nonempty, and let x be a vertex
of Xb for some b ∈ {0, 1}. If a vertex y ∈ Xb minimizes d(x, y), then we have (x, y) ∈ E.

We apply Lemma 14 to prove that the skeleton of any 0/1-polytope is a prefix graph.

Lemma 15. Let P be a 0/1-polytope and let G be its skeleton. Then G is a prefix graph.

Proof. Let G =: (X, E) with X ⊆ {0, 1}n, i.e., P = conv(X). We argue by induction on n. The
induction basis n = 0 is trivial. For the induction step we assume that n > 0. For b ∈ {0, 1} we
define P b− := conv(Xb−), and we observe that Gb− is the skeleton of P b−. By induction, we
obtain that G0− and G1− are prefix graphs, so condition (p1) in the definition given in Section 5.1
is satisfied. It remains to prove property (p2), under the assumption that X0 and X1 are both
nonempty. Let b ∈ {0, 1}, consider any vertex x ∈ Xb, and let y ∈ Xb be such that d(x, y) is
minimized. Then Lemma 14 shows that (x, y) ∈ E, and the lemma follows. □

6.2. History-free version of Algorithm P. We obtain the remarkable consequence that
Algorithm G or Algorithm G* compute a Hamilton path on the skeleton of any 0/1-polytope,
regardless of the choice of tiebreaking rule, and regardless of the choice of initial vertex.

Theorem 16. Let P be a 0/1-polytope and let G be its skeleton. For any tiebreaking rule and
any initial vertex x̃, Algorithm G or Algorithm G* compute a genlex Hamilton path on G starting
at x̃.

Proof. Combine Lemma 15 with Theorems 9 and 12. □

For 0/1-polytopes, we can specialize Algorithm G* further, and remove any references to its
skeleton by slightly modifying line G4. Specifically, by Lemma 14 any vertex with minimum
Hamming distance from the current vertex x is a neighbor on the skeleton, i.e., we have

{y ∈ E(x) | λ(x, y) = β} ⊇ argmin[y ∈ X − x ∧ λ(x, y) = β | d(x, y)] ̸= ∅.

This modification yields the following Algorithm P*. In step P5 we may still encounter ties, i.e.,
|N | > 1, which can again be broken arbitrarily.

Algorithm P* (History-free traversal of 0/1-polytope by shortest prefix changes). For a
set X ⊆ {0, 1}n, this algorithm greedily computes a Hamilton path on the skeleton of the
0/1-polytope conv(X), starting from an initial vertex x̃.
P1. [Initialize] Set x← x̃ and call branching([n]).
P2. [Visit] Visit x.
P3. [Min. unseen branching] Terminate if U is empty. Otherwise set I←U.pop() and β ← βI .
P4. [Closest vertices] Compute the set N of vertices y with λ(x, y) = β of minimum Hamming

distance from x, i.e., N ← argmin[y ∈ X − x ∧ λ(x, y) = β | d(x, y)].
P5. [Tiebreaker+update x] Pick any vertex y ∈ N and set x← y.
P6. [Update U ] Call branching(I \ [β]) and branching([β − 1]), and goto P2.

The corresponding specialization of Theorem 17 reads as follows, which establishes Theorem 1
stated in Section 1.4. Note that Algorithm P* is the history-free implementation of Algorithm P
stated there.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 21

Theorem 17. Let X ⊆ {0, 1}n. For any tiebreaking rule and any initial vertex x̃, Algorithm P*

computes a genlex Hamilton path on the skeleton of conv(X) starting at x̃.

Furthermore, the auxiliary problem B introduced in Section 5.4 can be specialized for Algo-
rithm P* as follows:
C Given a set X ⊆ {0, 1}n, an element x ∈ X and an integer β ∈ [n] with N := argmin[y ∈

X − x ∧ λ(x, y) = β | d(x, y)] ̸= ∅, compute an element in N .
We thus obtain the following specialization of Theorem 13.

Theorem 18. Let X ⊆ {0, 1}n, and suppose that problems A and C can be solved in time tA
and tC, respectively. Then for any tiebreaking rule and any initial vertex x̃, Algorithm P*

computes a genlex Hamilton path on the skeleton of conv(X) starting at x̃ with delay O(tA + tC).

The initialization time of Algorithm P* is O(tA), which is majorized by the delay O(tA + tC),
and the required space is the sum of the space needed to solve problems A and C.

6.3. Reducing problems A and C to a single linear optimization problem. It turns
out that both problems A and C can be reduced to one or more instances of the following
optimization problem, referred to as linear optimization with prescription.
LOP Given a set X ⊆ {0, 1}n, a weight vector w ∈ W n with W ⊆ R, and disjoint sets

P0, P1 ⊆ [n], compute an element in N := argmin[y ∈ X ∧ yP0 = 0 ∧ yP1 = 1 | w · y], or
decide that this problem is infeasible, i.e., N = ∅.

Recall that yPb
= b for b ∈ {0, 1} is a shorthand notation for yi = b for all i ∈ Pb. We refer to W

as the weight set.
We first show that problem A can be solved by combining an algorithm for problem LOP

with binary search.

Lemma 19. Suppose that problem LOP with weight set W = {−1, 0, +1} can be solved in
time tLOP = Ω(n). Then problem A can be solved in time O(tLOP log n).

Proof. Consider a set X ∈ {0, 1}n, an element x ∈ X and an interval I ∈ [n] as input for
problem A. First note that min{λI(x, y) | y ∈ X − x} ⊆ [n] ∪∞ and that

min{λI(x, y) | y ∈ X − x} ≤ α (4)

is a monotone property in α ∈ I. Therefore, it is enough to show that (4) can be decided in
time O(tLOP), as then we can compute min{λI(x, y) | y ∈ X−x} in time O(tLOP log n) by doing
binary search. For the given integer α ∈ I we define

wi :=


−1 if i ≥ min I and xi = 0,

+1 if i ≥ min I and x1 = 1,

0 if i < min I,

(5a)

and
Pb := {i > α | xi = b} for b ∈ {0, 1}. (5b)

We claim that
µ := min

y∈X ∧ yP0 =0 ∧ yP1 =1
w · y < w · x =: a

if and only if (4) holds. Indeed, if µ < a, then there is a y∗ ∈ X with y∗
P0

= 0, y∗
P1

= 1,
and y∗

i ̸= xi for some i ∈ I with i ≤ α. It follows that λI(x, y∗) ≤ α, which implies (4).
Conversely, if (4) holds, then there is y∗ ∈ X−x with λI(x, y∗) ≤ α, i.e., there is a position i ∈ I

with i ≤ α such that y∗
i ̸= xi and y∗

j = xj for all j ≥ i + 1, in particular y∗
P0

= 0 and y∗
P1

= 1.
As y∗

i ̸= xi we have w · y∗ < a and therefore µ < a. This completes the proof of the lemma. □



22 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

We now show that problem C can also be reduced to problem LOP.

Lemma 20. Suppose that problem LOP with weight set W = {−1, +1} can be solved in
time tLOP = Ω(n). Then problem C can be solved in time O(tLOP).

Proof. Consider a set X ⊆ {0, 1}n, an element x ∈ X and an integer β ∈ [n] with N :=
argmin[y ∈ X − x ∧ λ(x, y) = β | d(x, y)] ̸= ∅ as input for problem C. We define

wi :=

+1 if xi = 0,

−1 if xi = 1,
(6a)

and
Pb := {β | xβ = b} ∪ {i > β | xi = b} for b ∈ {0, 1}. (6b)

By this definition we have d(x, y) = w · (y − x), and as x is fixed, minimization of d(x, y) is the
same as minimization of w · y. Consequently, we have

N = argmin[y ∈ X − x ∧ λ(x, y) = β | d(x, y)] = argmin[y ∈ X ∧ yP0 = 0 ∧ yP1 = 1 | w · y].

In this calculation we used that from our definition of P0 and P1, the conditions yP0 = 0 and
yP1 = 1 are equivalent to yβ = xβ and yi = xi for i > β, which are equivalent to y ≠ x and
λ(x, y) = β. This completes the proof of the lemma. □

Note the opposite signs of the weights in (5a) and (6a) w.r.t. x. This is because the first
minimization problem rewards y to differ from x as much as possible, whereas the second problem
rewards y to agree with x as much as possible.

Combining these reductions yields the following fundamental result, which says that efficiently
solving prescription optimization on X yields an efficient algorithm for computing a Hamilton
path on the skeleton of conv(X).

Theorem 21. Let X ⊆ {0, 1}n and suppose that problem LOP with weight set W = {−1, 0, +1}
can be solved in time tLOP = Ω(n). Then for any tiebreaking rule and any initial vertex x̃,
Algorithm P* computes a genlex Hamilton path on the skeleton of conv(X) starting at x̃ with
delay O(tLOP log n).

The initialization time of Algorithm P* is the same as the delay, and the required space is the
same as the space needed to solve problem LOP.

Proof. Combine Lemmas 19 and 20 with Theorem 18. □

6.4. Cost-optimal solutions. In this section, we provide a variant of Theorem 21 for listing
only the cost-optimal elements of X with respect to some linear objective function, for example,
minimum weight spanning trees or maximum weight matchings in a graph. In particular,
this includes minimum or maximum cardinality solutions, for example maximum matchings or
minimum vertex covers in a graph.

Let C ⊆ Z, referred as the cost set. Furthermore, let c ∈ Cn be a cost vector and let Xc be
the elements in X with minimum cost according to c, i.e., Xc := argmin[x ∈ X | c · x]. The
elements of Xc lie on a hyperplane in n-dimensional space, and so conv(Xc) is a face of conv(X).
In particular, conv(Xc) is a 0/1-polytope whose edges are edges of conv(X). The problem LOP
on Xc thus becomes a bi-criteria linear optimization problem with prescription. In the following
we show that by appropriate amplification of the cost vector by a factor of n, we can eliminate
the bi-criteria optimization and reduce to a standard LOP. Specifically, given c ∈ Zn, we define

W (C) := {−1, 0, +1}+ nC =
{
w + nc | w ∈ {−1, 0, +1} and c ∈ C

}
, (7)



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 23

and reduce to solving LOPs with weight set W (C).
The following auxiliary lemma allows us to translate minimization on Xc to minimization

on X via weight amplification.

Lemma 22. Let X ⊆ {0, 1}n, w ∈ {−1, 0, +1}n, and c ∈ Cn with C ⊆ Z. Then the weight
vector w′ := w + nc ∈W (C)n with W (C) as defined in (7) has the following properties:

(i) For any y ∈ Xc and y′ ∈ X \ Xc we have w′ · y ≤ w′ · y′. Consequently, if y ∈ Xc and
y′ ∈ X satisfy w′ · y > w′ · y′, then we have y′ ∈ Xc.

(ii) Let β ∈ [n] be such that yβ = y′
β for all y, y′ ∈ X. Then we have argmin[y ∈ Xc | w′ · y] =

argmin[y ∈ X | w′ · y].

Proof. To prove (i), let y ∈ Xc and y′ ∈ X \Xc, i.e., y minimizes the costs and y′ does not, in
particular c · y < c · y′. As c is an integer vector, we therefore have c · y ≤ c · y′− 1. Furthermore,
as all entries of w are from {−1, 0, +1}, we have w · y ≤ w · y′ + n (the same inequality holds
with y and y′ interchanged, but this is not needed here). Combining these inequalities yields
w′ · y = w · y + nc · y ≤ w · y′ + n + n(c · y′ − 1) = (w + nc) · y′ = w′ · y′, as claimed.

To prove (ii), note that if all bitstrings from X agree in the βth position, then the second
inequality from before is strict, which yields the stronger conclusion w′ ·y < w′ ·y′, which directly
proves (ii). □

Lemmas 23 and 24 below are the analogues of Lemmas 19 and 20, respectively.

Lemma 23. Let X ⊆ {0, 1}n and c ∈ Cn with C ⊆ Z. Suppose that problem LOP for X with
weight set W (C) can be solved in time tLOP = Ω(n). Then problem A for Xc can be solved in
time O(tLOP log n).

Proof of Lemma 23. Consider the set Xc ⊆ {0, 1}n, an element x ∈ Xc and an interval I ∈ [n]
as input for problem A. We show that

min{λI(x, y) | y ∈ Xc − x} ≤ α (8)

can be decided in time O(tLOP), from which it follows that min{λI(x, y) | y ∈ Xc − x} can be
computed in time O(tLOP log n) by doing binary search. We define P0, P1 and w ∈ {−1, 0, +1}n
as in (5), and we also define w′ := w + nc ∈W (C)n. We claim that

µ := min
y∈X ∧ yP0 =0 ∧ yP1 =1

w′ · y < w′ · x = (w + nc) · x =: a (9)

if and only if (8) holds. Crucially, the minimization in (9) is over the entire set X, whereas the
minimization in (8) is only over the subset Xc ⊆ X.

To prove one direction of the claim, note that if µ < a, then there is a y∗ ∈ X with y∗
P0

= 0,
y∗

P1
= 1, and y∗

i ≠ xi for some i ∈ I with i ≤ α. It follows that λI(x, y∗) ≤ α. Applying
Lemma 22 (i) shows that y∗ ∈ Xc, which implies (8).

To prove the other direction of the claim, if (8) holds, then there is y∗ ∈ Xc − x with
λI(x, y∗) ≤ α, i.e., there is a position i ∈ I with i ≤ α such that y∗

i ̸= xi and y∗
j = xj for all

j ≥ i + 1, in particular y∗
P0

= 0 and y∗
P1

= 1. As y∗
i ̸= xi we have w · y∗ < w · x. Using that

y ∈ Xc we also have c · y∗ = c · x. Combining these observations yields w′ · y∗ = w · y∗ + nc · y∗ <

w · x + nc · x = (w + nc) · x = a and therefore µ < a. This completes the proof of the lemma. □

Lemma 24. Let X ⊆ {0, 1}n and c ∈ Cn with C ⊆ Z. Suppose that problem LOP for X with
weight set W (C) can be solved in time tLOP = Ω(n). Then problem C for Xc can be solved in
time O(tLOP).



24 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

Proof. Consider the set Xc ⊆ {0, 1}n, an element x ∈ Xc and an integer β ∈ [n] with N :=
argmin[y ∈ Xc − x ∧ λ(x, y) = β | d(x, y)] ̸= ∅ as input for problem C. We define P0, P1 and w

as in (6), and we also define w′ := w + nc ∈W (C)n.
By these definitions we have d(x, y) = w · (y − x) = (w′ − nc) · (y − x), and as x is fixed and

c · y is the same value for all y ∈ Xc, minimization of d(x, y) is the same as minimization of w′ · y.
Consequently, we have

N = argmin[y ∈ Xc − x ∧ λ(x, y) = β | d(x, y)]
= argmin[y ∈ Xc ∧ yP0 = 0 ∧ yP1 = 1 | w′ · y]
= argmin[y ∈ X ∧ yP0 = 0 ∧ yP1 = 1 | w′ · y],

where we used the definitions of P0 and P1 in the first step, and Lemma 22 (ii) in the second
step. □

Theorem 25. Let X ⊆ {0, 1}n and c ∈ Cn with C ⊆ Z. Suppose that problem LOP for X with
weight set W (C) as defined in (7) can be solved in time tLOP = Ω(n). Then for any tiebreaking
rule and any initial vertex x̃ ∈ Xc, Algorithm P* computes a genlex Hamilton path on the skeleton
of conv(Xc) starting at x̃ with delay O(tLOP log n).

Proof. Combine Lemmas 23 and 24 with Theorem 18. □

Remark 26. Suppose that problem LOP for X with weight set W can be solved in time f(n, M),
where M := max W . Then problem LOP for X with weight set W (C) can be solved in
time f(n, nM). Often the dependency of f on M is polylogarithmic, and in those cases f(n, nM)
is only by a polylogarithmic factor in n bigger than f(n, M). Then the delay of Algorithm P*

is only by a polylogarithmic factor in n larger than the time for solving the corresponding
optimization problem on X.

6.5. Eliminating the prescription constraints. A similar weight amplification trick can be
used to reduce linear optimization with prescription to classical linear optimization (without
prescription).

LO Given a set X ⊆ {0, 1}n and a weight vector w ∈W n with W ⊆ R, compute an element
in N := argmin[y ∈ X | w · y], or decide that this problem is infeasible, i.e., N = ∅.

Lemma 27. Let X ⊆ {0, 1}n and w ⊆W n with W ⊆ Z∩ [−M, +M ]. Suppose that problem LO
with weight set W ∪ {−nM, +nM} can be solved in time tLO = Ω(n). Then problem LOP with
weight set W can be solved in time O(tLO).

Proof. Consider X and w as in the lemma, and sets P0, P1 ⊆ [n] as input for problem LOP. We
define Q := [n] \ (P0 ∪ P1). Clearly, we may assume that |P0 ∪ P1| > 0, or equivalently |Q| < n.
We define a weight vector w′ ∈ (W ∪ {−nM, +nM})n by

w′
i :=


wi if i ∈ Q,

+nM if i ∈ P0,

−nM if i ∈ P1.

We claim that

N := argmin[y ∈ X ∧ yP0 = 0 ∧ yP1 = 1 | w · y] = argmin[y ∈ X | w′ · y].

For any y ∈ X we define the abbreviations f(y) :=
∑

i∈Q wiyi and g(y) :=
∑

i∈P0 yi −
∑

i∈P1 yi,
so w′ · y = f(y) + nMg(y). Furthermore, we define XP := {y ∈ X | yP0 = 0 ∧ yP1 = 1}. Let
y ∈ XP and y′ ∈ X \ XP . As all entries of y and y′ are from {0, 1} and |wi| ≤ M we have



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 25

Table 3. Delay of Algorithm P* obtained from applying Theorems 21 and 25 with
Lemma 27. We assume that problems LOP and LO for X can be solved in time tLOP =
f(n, M) or tLO = g(n, M), respectively, where M is an upper bound on the entries of
the weight vector w ∈W n, i.e., W ⊆ Z ∩ [−M, +M ]. We also assume that both of these
functions are in Ω(n).

Objects Optimization
problem

Weight set Delay of Algorithm P*

All elements in X
LOP for X {−1, 0, 1} O(f(n, 1) log n)

Thm. 21
LO for X {−n,−1, 0, 1, n} O(g(n, n) log n)

Thm. 21+Lemma 27
Elements in X of
minimum size, i.e.,
c = (+1, . . . , +1)

LOP for X {n− 1, n, n + 1} O(f(n, n + 1) log n)
Thm. 25

LO for X {−n(n + 1), n− 1, n, n + 1, n(n + 1)} O(g(n, n(n + 1)) log n)
Thm. 25 + Lemma 27

Elements in X of
maximum size, i.e.,
c = (−1, . . . ,−1)

LOP for X {−n− 1,−n,−n + 1} O(f(n, n + 1) log n)
Thm. 25

LO for X {−n(n + 1),−n− 1,−n,−n + 1, n(n + 1)} O(g(n, n(n + 1)) log n)
Thm. 25 + Lemma 27

c-optimal elements in
X where c ∈ Cn and
C ⊆ Z ∩ [−M, M ]

LOP for X W (C) O(f(n, nM + 1) log n)
Thm. 25

LO for X W (C) ∪ {−n(nM + 1), n(nM + 1)}) O(g(n, n(nM + 1)) log n)
Thm. 25 + Lemma 27

wi(yi − y′
i) ≤ M and therefore f(y) ≤ f(y′) + |Q|M < f(y′) + nM . Furthermore, note that

g(y) = −|P1| and g(y′) ≥ −|P1|+ 1 = g(y) + 1. Combining these inequalities yields

w′ · y = f(y) + nMg(y) < f(y′) + nM + nM(g(y′)− 1) = f(y′) + nMg(y′) = w′ · y′,

which proves that argmin[y ∈ X | w′ · y] = argmin[y ∈ XP | w′ · y]. Now observe that
w′ · y = w · y +

∑
i∈P0∪P1(w′

i − wi)yi, and the sum on the right hand side of this equation is a
constant for all y ∈ XP , so minimizing w′ · y over all y ∈ XP is the same as minimizing w · y
over all y ∈ XP . This proves the claim and thus the lemma. □

Via Lemma 27, the problem of computing a Hamilton path on the polytope conv(X) is
reduced entirely to solving linear optimization (problem LO) over X. Lemma 27 can be applied
in conjunction with Theorem 21 or Theorem 25; see Table 3.

Remark 28. The results obtained by applying Lemma 27 are incomparable to those obtained
without the lemma (which rely on solving problem LOP). Specifically, while eliminating the
prescription constraints one arrives at a simpler optimization problem, this comes at the
cost of increasing the weights, thus potentially increasing the running time. Nevertheless,
Lemma 27 provides an automatic way to exploit any algorithm for the linear optimization
problem on X (problem LO; without prescription constraints) for computing a Hamilton path on
the corresponding 0/1-polytope conv(X), with provable runtime guarantees for this computation.



26 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

7. Applications

In this section, we show how to apply our general theorems to obtain efficient algorithms
for generating Gray codes for different concrete classes of combinatorial objects. The list of
applications shown here is not exhaustive, but exemplarily. More results are derived in short
form in Table 1.

7.1. Vertices of a 0/1-polytope. Let A ∈ Rm×n and b ∈ Rm be such that P := {x ∈ Rn |
Ax ≤ b} is a 0/1-polytope. We let X ⊆ {0, 1}n denote the set of vertices of P , i.e., we have
P = conv(X). The problem LOP defined in Section 1.5 translates to solving the LP

min{w · x | Ax ≤ b ∧ xP0 = 0 ∧ xP1 = 1}.

By eliminating the prescribed variables from this problem, we see that it is equivalent to the
standard LP

min{w · x | Ax ≤ b} (10)
(with modified A, b, and w, but with the same bounds on their sizes). Thus, invoking Theorem 21
we obtain the following result about the vertex enumeration problem for 0/1-polytopes. Our
result improves upon the O(tLP n) delay algorithm of Bussieck and Lübbecke [BL98], and it has
the additional feature that the vertices of the polytope are visited in the order of a Hamilton
path on the skeleton.

Corollary 29. Let P = {x ∈ Rn | Ax ≤ b} be a 0/1-polytope, and suppose that the LP (10) can be
solved in time tLP = Ω(mn). Then for any tiebreaking rule and any initial vertex x̃, Algorithm P*

computes a genlex Hamilton path on the skeleton of P starting at x̃ with delay O(tLP log n).

We can also apply Theorem 25 to visit only the cost-optimal vertices of P . For this we also
assume that tLP depends polylogarithmically on the largest weight (recall Remark 26).

Corollary 30. Let P and tLP be as in Corollary 29, and suppose that tLP is polylogarithmic
in the largest weight. Furthermore, let c ∈ Zn and Pc := argmin[x ∈ P | c · x]. Then for any
tiebreaking rule and any initial vertex x̃ ∈ Pc, Algorithm P* computes a genlex Hamilton path on
the skeleton of Pc starting at x̃ with delay O(tLP poly(log n)).

The initialization time of Algorithm P* in both results is the same as the delay, and the
required space is the same as the space needed to solve the LP (10).

7.2. Spanning trees of a graph. Let H be a connected n-vertex graph with edge set [m]. We
let X denote the set of indicator vectors of spanning trees of H, i.e.,

X = {1T | T ⊆ [m] is a spanning tree of H} ⊆ {0, 1}m.

It is well known ([HK78]) that the edges of the spanning tree polytope conv(X) are precisely
between pairs of trees T, T ′ that differ in an edge exchange, i.e., there are edges i, j ∈ [m] such
that T ′ = T + i− j. We thus obtain the following specialization of Algorithm G for listing all
spanning trees of H by edge exchanges. The greedy update rule in step T3 minimizes the larger
of the two edges in each exchange.

Algorithm T (Spanning trees by shortest prefix changes). Given a connected graph H with
edge set [m], this algorithm greedily generates all spanning trees of H by edge exchanges,
starting from an initial spanning tree T̃ .
T1. [Initialize] Set T ← T̃ .
T2. [Visit] Visit T .



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 27

T3. [Shortest prefix change] Compute the set N of unvisited spanning trees T ′ that differ
from T in the exchange of edges i, j with smallest value max{i, j}, i.e., N ← argmin[T ′ =
T + i− j spanning tree of H ∧ T ′ unvisited | max{i, j}]. Terminate if N = ∅.

T4. [Tiebreaker+update T ] Pick any tree T ′ ∈ N , set T ← T ′ and goto T2.

This algorithm for generating spanning trees by edge exchanges has been described before
by Merino, Mütze, and Williams [MMW22]. They gave an implementation that achieves
delay O(m log n(log log n)3). We now improve on this result using our framework via optimization.

The problem LOP defined in Section 1.5 translates to computing a minimum weight spanning
tree T in H according to some weight function w ∈ Rm, with the prescription constraints
P0 ∩ T = ∅ and P1 ⊆ T , i.e., the edges in P0 are forbidden, and the edges in P1 are forced.
This could be achieved by computing the graph H ′ that is obtained from H by deleting the
edges in P0 and contracting the edges in P1, which may however be costly. Instead, we solve the
problem on the original graph H, but with the modified weight function

w′
i :=


wi if i /∈ P0 ∪ P1,

M if i ∈ P0,

−M if i ∈ P1,

where M is chosen so that M > maxi∈[m] |wi|. For applying Theorem 21 we only need to consider
weights w ∈ {−1, 0, 1}m, so we can take M = 2. For graphs with constantly many distinct edge
weights (in our case {−2,−1, 0, 1, 2}), the minimum spanning tree problem can be solved in
time O(m), by a variation of Prim’s algorithm that instead of a priority queue uses one list of
same weight edges for each possible weight. Theorem 21 thus yields the following corollary.

Corollary 31. Let H be an n-vertex graph with edge set [m]. Then for any tiebreaking rule and
any initial spanning tree T̃ , Algorithm P* computes a genlex listing of all spanning trees of H by
edge exchanges starting at T̃ with delay O(m log n).

To generate all cost-optimal spanning trees, we apply Theorem 25 and combine it with
Chazelle’s [Cha00] algorithm for computing minimum spanning trees, which runs timeO(mα(m, n)),
where α is the functional inverse of the Ackermann function.

Corollary 32. Let H be an n-vertex graph with edge set [m], and let c ∈ Zm. Then for
any tiebreaking rule and any initial c-minimal spanning tree T̃ , Algorithm P* computes a
genlex listing of all c-minimal spanning trees of H by edge exchanges starting at T̃ with de-
lay O(mα(m, n) log n).

In both of these results, the initialization time of Algorithm P* is the same as the delay, and
the required space is the same as for computing a minimum spanning tree.

7.3. Matchings of a graph. Let H be an n-vertex graph with edge set [m]. We let X denote
the set of indicator vectors of matchings of H, i.e.,

X = {1M |M ⊆ [m] is a matching of H} ⊆ {0, 1}m.

It is well known ([Chv75]) that the edges of the matching polytope conv(X) are precisely between
pairs of matchings M, M ′ that differ in an alternating path or cycle exchange, i.e., there is a
path or cycle E such that M ′ = M△E, where △ denotes the symmetric difference. We thus
obtain the following specialization of Algorithm G for listing all matchings of H by alternating
path/cycle exchanges. The greedy update rule in step M3 minimizes the largest of the edges
in E.



28 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

Algorithm M (Matchings by shortest prefix changes). Given a graph H with edge set [m],
this algorithm greedily generates all matchings of H by alternating path/cycle exchanges,
starting from an initial matching M̃ .

M1. [Initialize] Set M ← M̃ .
M2. [Visit] Visit M .
M3. [Shortest prefix change] Compute the set N of unvisited matchings M ′ that differ

from M in the exchange of an alternating path/cycle E with smallest value max E, i.e.,
N ← argmin[M ′ = M△E matching∧E path/cycle∧M ′ unvisited | max E]. Terminate
if N = ∅.

M4. [Tiebreaker+update M ] Pick any matching M ′ ∈ N , set M ←M ′ and goto M2.

The problem LOP defined in Section 1.5 translates to computing a minimum weight match-
ing M in H according to some weight function w ∈ Rm, with the prescription constraints
P0 ∩M = ∅ and P1 ⊆ M , i.e., the edges in P0 are forbidden, and the edges in P1 are forced.
This can be achieved by computing the graph H ′ that is obtained from H by deleting the edges
in P0 and deleting the vertices that are endpoints of edges in P1. We then find a minimum
weight matching in the smaller graph H ′. For applying Theorem 21 we only need to consider
weights w ∈ {−1, 0, 1}m, and as LOP is a minimization problem, we can simplify H ′ further by
deleting all edges with weights 0 or 1, which yields a graph H ′′ that has only edges of weight −1.
A minimum weight matching in H ′′ is therefore a maximum matching in H ′′, and for finding
this we use Micali and Vazirani’s [MV80] algorithm, which runs in time O(m

√
n). Theorem 21

thus yields the following corollary. As Algorithm P* minimizes the Hamming distance when
moving to the next matching, the alternating path/cycle will in fact always be an alternating
path of length ≤ 3.

Corollary 33. Let H be an n-vertex graph without isolated vertices with edge set [m]. Then
for any tiebreaking rule and any initial matching M̃ , Algorithm P* computes a genlex list-
ing of all matchings of H by alternating path exchanges of length ≤ 3 starting at M̃ with
delay O(m

√
n log n).

To generate all cost-optimal matchings w.r.t. some cost vector c ∈ Zm, we apply Theo-
rem 25 and combine it with Duan, Pettie and Su’s [DPS18] algorithm, which runs in time
O(m

√
n log(n|c|)), or Gabow’s [Gab17] implementation of Edmond’s algorithm, which runs in

time O(mn + n2 log n). The quantity |c| is the maximum absolute value of entries of c. These
algorithms maximize the weight instead of minimizing it, but we can simply multiply all weights
by −1.

Corollary 34. Let H be an n-vertex graph without isolated vertices with edge set [m], and let
c ∈ Zm. Then for any tiebreaking rule and any initial c-minimal matching M̃ , Algorithm P*

computes a genlex listing of all c-minimal matchings of H by alternating path/cycle exchanges
starting at M̃ with delay

min
{
O(m

√
n log(n|c|) log n),O((mn + n2 log n) log n)

}
.

A particularly interesting case is when the cost vector is c = (−1, . . . ,−1), i.e., we obtain all
maximum size matchings of H. In particular, if H has a perfect matching, we can generate all
perfect matchings of H. The weights for our minimization problem will be {−m−1,−m,−m+1},
and for the corresponding maximization problem they will be {m− 1, m, m + 1}.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 29

Corollary 35. Let H be an n-vertex graph without isolated vertices with edge set [m]. Then for
any tiebreaking rule and any initial maximum matching M̃ , Algorithm P* computes a genlex
listing of all maximum matchings of H by alternating path/cycle exchanges starting at M̃ with
delay O(m

√
n(log n)2).

In all three of these results, the initialization time of Algorithm P* is the same as the delay,
and the required space is the same as for computing a maximum (weight) matching.

8. Duality between Algorithm P and Algorithm J

There is an interesting duality between the generation framework proposed here and the
permutation language framework due to Hartung, Hoang, Mütze and Williams [HHMW22].
Their framework encodes combinatorial objects by permutations of length n, and the local change
operation to go from one permutation to the next is a cyclic substring shift by one position,
subject to the constraint that the largest value j in the substring wraps around and moves to the
other end of the substring. This operation is referred to as a jump of j, the number of steps of
the jump is one less than the length of the shifted substring, and its direction is the direction of
movement of j in the substring. For example 24135→ 21345 is a jump of the value 4 by 2 steps
to the right. Similarly, 123 · · ·n→ n123 · · · (n− 1) is a jump of the value n by n− 1 steps to
the left. Their framework is based on a simple greedy algorithm, Algorithm J , which attempts
to generate a set of permutations by jumps, by repeatedly and greedily performing a shortest
possible jump of the largest possible value so that a previously unvisited permutation is created.
Compare this to our Algorithm P, which repeatedly and greedily performs a prefix change of
shortest possible length so that a previously unvisited bitstring is created. In fact, these two
algorithms are dual to each other: While Algorithm J works based on values, Algorithm P works
based on positions.

Specifically, we can simulate Algorithm P by Algorithm J, by encoding bitstrings of length n

by permutations of length n + 1. This encoding is defined inductively using the suffix tree
generated by a run of Algorithm P, and can be done so that a prefix change of length d on the
bitstrings corresponds to a jump of the value j := n− d + 2 by j − 1 steps in the permutations
(i.e., j jumps across all values smaller than itself).

Conversely, Algorithm J can also be simulated by Algorithm P (even though Algorithm P
knows only 0s and 1s). The idea is to encode each permutation π = a1 · · · an+1 by its inversion
table c = c1 · · · cn+1, where 0 ≤ ci ≤ i − 1 counts the number of entries of π that are smaller
than i and to the right of i. The value ci of the inversion table is encoded by a bitstring of
length i with a single 1 at position ci (counted from 0), and the entire inversion table is encoded
by concatenating these bitstrings in reverse order. In the simulation, a jump of the value i by
d steps in the permutation changes exactly the entry ci by ±d, and so this 1-bit moves by d

positions in the corresponding encoding. By the concatenation in reverse order, a jump of the
largest possible value corresponds to a change of the shortest possible prefix.

9. Open questions

We conclude this paper with some open questions.
• Does our theory generalize to nonbinary alphabets (cf. the discussion in the previous section)?

More specifically, instead of encoding a class of objects X as bitstrings X ⊆ {0, 1}n, we may use
X ⊆ {0, 1, . . . , b− 1} for some integer b ≥ 2. Many of the concepts introduced here generalize
straightforwardly, including Algorithm G, genlex ordering, suffix trees, and Theorem 5 (recall
in particular Remark 6). However, it is not clear how to generalize prefix graphs so that they



30 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

arise as the skeleta of the corresponding polytopes. Most importantly, not all polytopes admit
a Hamilton path, unlike 0/1-polytopes via Naddef and Pulleyblank’s [NP84] result.
• Is there an improved amortized analysis of Algorithm P, maybe for certain classes of combina-

torial objects? Such an analysis would need to consider the heights at which branchings occur
in the suffix tree, and this may depend on the ordering of the ground set. For combinations
(=bases of the uniform matroid) such an improved amortized analysis can be carried out and
provides better average delay guarantees (see [MMW22]).
• Can we get Gray code listings for particular classes of objects from our framework that have

interesting additional structural properties? For example, Knuth [Knu11] asked whether there
is a simple ordering of the spanning trees of the complete graph Kn by edge exchanges. It is
not completely well-defined what ‘simple’ means, but certainly efficient ranking and unranking
algorithms would be desirable.

References
[ABMP91] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality matching in a

bipartite graph in time O(n1.5
√

m/ log n). Inform. Process. Lett., 37(4):237–240, 1991.
[AF92] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements

and polyhedra. Discrete Comput. Geom., 8(3):295–313, 1992. ACM Symposium on Computational
Geometry (North Conway, NH, 1991).

[AF96] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-3):21–46, 1996.
First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz).

[Avi00] D. Avis. A revised implementation of the reverse search vertex enumeration algorithm. In Polytopes—
combinatorics and computation (Oberwolfach, 1997), volume 29 of DMV Sem., pages 177–198.
Birkhäuser, Basel, 2000.

[BE07] M. Behle and F. Eisenbrand. 0/1 vertex and facet enumeration with BDDs. In Proceedings of the
Ninth Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana,
USA, January 6, 2007. SIAM, 2007.

[BEGM09] E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. Generating vertices of polyhedra and related
problems of monotone generation. In Polyhedral computation, volume 48 of CRM Proc. Lecture Notes,
pages 15–43. Amer. Math. Soc., Providence, RI, 2009.

[BEGT11] E. Boros, K. Elbassioni, V. Gurvich, and H. R. Tiwary. The negative cycles polyhedron and hardness
of checking some polyhedral properties. Ann. Oper. Res., 188:63–76, 2011.

[BL98] M. R. Bussieck and M. E. Lübbecke. The vertex set of a 0/1-polytope is strongly P-enumerable.
Comput. Geom., 11(2):103–109, 1998.

[CCPS98] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New
York, 1998. A Wiley-Interscience Publication.

[CGM+22] A. Conte, R. Grossi, A. Marino, T. Uno, and L. Versari. Proximity search for maximal subgraph
enumeration. SIAM J. Comput., 51(5):1580–1625, 2022.

[CGS21] B. Cameron, A. Grubb, and J. Sawada. A pivot Gray code listing for the spanning trees of the
fan graph. In C.-Y. Chen, W.-K. Hon, L.-J. Hung, and C.-W. Lee, editors, Proceedings of the 27th
International Computing and Combinatorics Conference (COCOON 2021), Tainan, Taiwan, October
24–26, volume 13025 of Lecture Notes in Comput. Sci., pages 49–60. Springer, 2021.

[Cha00] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. J. ACM,
47(6):1028–1047, 2000.

[CHJ91] P.-C. Chen, P. Hansen, and B. Jaumard. On-line and off-line vertex enumeration by adjacency lists.
Oper. Res. Lett., 10(7):403–409, 1991.

[Chv75] V. Chvátal. On certain polytopes associated with graphs. J. Combinatorial Theory Ser. B, 18:138–154,
1975.

[CSW21] B. Cameron, J. Sawada, and A. Williams. A Hamilton cycle in the k-sided pancake network. In
Combinatorial algorithms, volume 12757 of Lecture Notes in Comput. Sci., pages 137–151. Springer,
Cham, [2021] ©2021.



TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION 31

[DPS18] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for weighted matching in general graphs. ACM
Trans. Algorithms, 14(1):Art. 8, 35 pp., 2018.

[DS12] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in bipartite graphs. In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1413–1424. ACM, New York, 2012.

[Dye83] M. E. Dyer. The complexity of vertex enumeration methods. Math. Oper. Res., 8(3):381–402, 1983.
[EM20] K. Elbassioni and K. Makino. Enumerating vertices of covering polyhedra with totally unimodular

constraint matrices. SIAM J. Discrete Math., 34(1):843–864, 2020.
[FM92] K. Fukuda and T. Matsui. Finding all minimum-cost perfect matchings in bipartite graphs. Networks,

22(5):461–468, 1992.
[FRS03] S. Felsner, V. Raghavan, and J. Spinrad. Recognition algorithms for orders of small width and graphs

of small Dilworth number. Order, 20(4):351–364 (2004), 2003.
[Gab17] H. N. Gabow. A data structure for nearest common ancestors with linking. ACM Trans. Algorithms,

13(4):Art. 45, 28 pp., 2017.
[Gav00] F. Gavril. Maximum weight independent sets and cliques in intersection graphs of filaments. Inform.

Process. Lett., 73(5-6):181–188, 2000.
[HHMW22] E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combinatorial generation via permutation

languages. I. Fundamentals. Trans. Amer. Math. Soc., 375(4):2255–2291, 2022.
[HK73] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.

SIAM J. Comput., 2:225–231, 1973.
[HK78] D. Hausmann and B. Korte. Colouring criteria for adjacency on 0–1-polyhedra. Math. Programming

Stud., pages 106–127, 1978. Polyhedral combinatorics.
[HL19] T. Hibi and N. Li. Cutting convex polytopes by hyperplanes. Mathematics, 7(5), 2019.
[HMNS01] M. Habib, R. Medina, L. Nourine, and G. Steiner. Efficient algorithms on distributive lattices. Discrete

Appl. Math., 110(2-3):169–187, 2001.
[Knu11] D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1.

Addison-Wesley, Upper Saddle River, NJ, 2011.
[KR91] S. Kapoor and H. Ramesh. Algorithms for generating all spanning trees of undirected, directed and

weighted graphs. In Algorithms and data structures (Ottawa, ON, 1991), volume 519 of Lecture Notes
in Comput. Sci., pages 461–472. Springer, Berlin, 1991.

[KV18] B. Korte and J. Vygen. Combinatorial optimization, volume 21 of Algorithms and Combinatorics.
Springer, Berlin, 2018. Theory and algorithms, Sixth edition of [ MR1764207].

[LRvBR93] J. M. Lucas, D. Roelants van Baronaigien, and F. Ruskey. On rotations and the generation of binary
trees. J. Algorithms, 15(3):343–366, 1993.

[MMW22] A. Merino, T. Mütze, and A. Williams. All your bases are belong to us: listing all bases of a matroid
by greedy exchanges. In 11th International Conference on Fun with Algorithms, volume 226 of LIPIcs.
Leibniz Int. Proc. Inform., pages Paper No. 22, 28 pp. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2022.

[MR80] T. H. Mat[t]heiss and D. S. Rubin. A survey and comparison of methods for finding all vertices of
convex polyhedral sets. Math. Oper. Res., 5(2):167–185, 1980.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method. In
Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, pages 51–73.
Princeton University Press, Princeton, N.J., 1953.

[Müt22] T. Mütze. Combinatorial Gray codes—an updated survey. https://arxiv.org/abs/2202.01280,
2022.

[MV80] S. Micali and V. V. Vazirani. An O(
√

|V ||E|) algorithm for finding maximum matching in general
graphs. In 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA,
13-15 October 1980, pages 17–27. IEEE Computer Society, 1980.

[NP81] D. Naddef and W. R. Pulleyblank. Hamiltonicity and combinatorial polyhedra. J. Combin. Theory
Ser. B, 31(3):297–312, 1981.

[NP84] D. J. Naddef and W. R. Pulleyblank. Hamiltonicity in (0-1)-polyhedra. J. Combin. Theory Ser. B,
37(1):41–52, 1984.

[Ord67] R. J. Ord-Smith. Algorithm 308: Generation of the permutations in pseudo-lexicographic order [G6].
Commun. ACM, 10(7):452, 1967.

https://arxiv.org/abs/2202.01280


32 TRAVERSING COMBINATORIAL 0/1-POLYTOPES VIA OPTIMIZATION

[Orl13] J. B. Orlin. Max flows in O(nm) time, or better. In STOC’13—Proceedings of the 2013 ACM
Symposium on Theory of Computing, pages 765–774. ACM, New York, 2013.

[PR93] G. Pruesse and F. Ruskey. Gray codes from antimatroids. Order, 10(3):239–252, 1993.
[RSW12] F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex order. J. Combin.

Theory Ser. A, 119(1):155–169, 2012.
[Rus03] F. Ruskey. Combinatorial generation. Book draft, 2003.
[Rus16] F. Ruskey. Combinatorial Gray code. In Encyclopedia of Algorithms, pages 342–347. 2016.
[Sav97] C. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997.
[Sch03a] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A, volume 24 of Algorithms

and Combinatorics. Springer-Verlag, Berlin, 2003. Paths, flows, matchings, Chapters 1–38.
[Sch03b] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24 of Algorithms

and Combinatorics. Springer-Verlag, Berlin, 2003. Matroids, trees, stable sets, Chapters 39–69.
[Sch03c] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. C, volume 24 of Algorithms

and Combinatorics. Springer-Verlag, Berlin, 2003. Disjoint paths, hypergraphs, Chapters 70–83.
[Smi97] M. J. Smith. Generating spanning trees. Master’s thesis, University of Victoria, 1997.
[Sta86] R. P. Stanley. Two poset polytopes. Discrete Comput. Geom., 1(1):9–23, 1986.
[SW12] J. Sawada and A. Williams. Efficient oracles for generating binary bubble languages. Electron. J.

Combin., 19(1):Paper 42, 20 pp., 2012.
[SW16] J. Sawada and A. Williams. Greedy flipping of pancakes and burnt pancakes. Discrete Appl. Math.,

210:61–74, 2016.
[Tho04] M. Thorup. Integer priority queues with decrease key in constant time and the single source shortest

paths problem. J. Comput. System Sci., 69(3):330–353, 2004.
[Uno97] T. Uno. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs.

In Algorithms and computation (Singapore, 1997), volume 1350 of Lecture Notes in Comput. Sci.,
pages 92–101. Springer, Berlin, 1997.

[Uno99] T. Uno. A new approach for speeding up enumeration algorithms and its application for matroid
bases. In Computing and combinatorics (Tokyo, 1999), volume 1627 of Lecture Notes in Comput.
Sci., pages 349–359. Springer, Berlin, 1999.

[Wal03] T. Walsh. Generating Gray codes in O(1) worst-case time per word. In Discrete mathematics and
theoretical computer science, volume 2731 of Lecture Notes in Comput. Sci., pages 73–88. Springer,
Berlin, 2003.

[Wil13] A. Williams. The greedy Gray code algorithm. In Algorithms and data structures, volume 8037 of
Lecture Notes in Comput. Sci., pages 525–536. Springer, Heidelberg, 2013.

[YKW10] T. Yamada, S. Kataoka, and K. Watanabe. Listing all the minimum spanning trees in an undirected
graph. Int. J. Comput. Math., 87(14):3175–3185, 2010.

[Zak84] S. Zaks. A new algorithm for generation of permutations. BIT, 24(2):196–204, 1984.
[Zie95] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag,

New York, 1995.


	1. Introduction
	1.1. Our contribution
	1.2. Encoding of objects by bitstrings
	1.3. Combinatorial 0/1-polytopes
	1.4. The basic algorithm
	1.5. Reduction to classical linear optimization
	1.6. Applications
	1.7. Related work
	1.8. Outline of this paper

	2. Preliminaries
	3. Binary graphs and a simple greedy algorithm
	4. Genlex order
	5. Prefix graphs and history-free implementation
	5.1. Prefix graphs
	5.2. Suffix trees and branchings
	5.3. History-free implementation
	5.4. Two auxiliary problems

	6. A bridge to combinatorial optimization
	6.1. Skeleta of 0/1-polytopes are prefix graphs
	6.2. History-free version of Algorithm P
	6.3. Reducing problems A and C to a single linear optimization problem
	6.4. Cost-optimal solutions
	6.5. Eliminating the prescription constraints

	7. Applications
	7.1. Vertices of a 0/1-polytope
	7.2. Spanning trees of a graph
	7.3. Matchings of a graph

	8. Duality between Algorithm P and Algorithm J
	9. Open questions
	References

