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Abstract. For integers k ≥ 1 and n ≥ 2k + 1, the Schrijver graph S(n, k) has as vertices all
k-element subsets of [n] := {1, 2, . . . , n} that contain no two cyclically adjacent elements, and
an edge between any two disjoint sets. More generally, for integers k ≥ 1, s ≥ 2, and n ≥ sk + 1,
the s-stable Kneser graph S(n, k, s) has as vertices all k-element subsets of [n] in which any
two elements are in cyclical distance at least s. We prove that all the graphs S(n, k, s), in
particular Schrijver graphs S(n, k) = S(n, k, 2), admit a Hamilton cycle that can be computed
in time O(n) per generated vertex.

1. Introduction

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all k-element
subsets of [n] := {1, 2, . . . , n}, and an edge between any two sets A and B that are disjoint, i.e.,
A∩B = ∅. Kneser graphs were popularized by Lovász [Lov78] in his celebrated proof of Kneser’s
conjecture, where he proved that the chromatic number of K(n, k) equals n− 2(k − 1), using
topological arguments. Schrijver [Sch78] considered an induced subgraph of K(n, k), obtained by
considering as vertices only the k-element sets that contain no two cyclically adjacent numbers,
i.e., for any vertex A ⊆ [n] and any two elements i, j ∈ A with i < j, we require that j − i ≥ 2
and j − i 6= n− 1. This graph is referred as Schrijver graph S(n, k), and Schrijver showed that
it is vertex-critical, i.e., it has the same chromatic number as the Kneser graph K(n, k), but
removing any of its vertices will decrease the chromatic number. Both Kneser and Schrijver
graphs are generalized by s-stable Kneser graphs S(n, k, s). Those are defined for integers k ≥ 1,
s ≥ 1, and n ≥ max{2, s}k + 1, as the induced subgraph of K(n, k) obtained by considering as
vertices only the k-element sets that contain no two numbers in cyclical distance less than s,
i.e., for any vertex A ⊆ [n] and any two elements i, j ∈ A with i < j, we require that j − i ≥ s
and j−i /∈ {n−1, n−2, . . . , n−s+1}. Note that S(n, k, 1) is precisely the Kneser graph K(n, k),
whereas S(n, k, 2) is precisely the Schrijver graph S(n, k). Meunier [Meu11, Conj. 2] conjectured
that the chromatic number of S(n, k, s) equals n− s(k − 1) when s ≥ 2, and some progress in
this direction has been made [Jon12, Che15].

In this paper, we consider the problem of finding Hamilton cycles in Schrijver graphs, and more
generally, in s-stable Kneser graphs. For Kneser graphs K(n, k), this problem was recently settled
affirmatively by Merino, Mütze and Namrata [MMN23]. Specifically, we showed that all Kneser
graphsK(n, k), n ≥ 2k+1, admit a Hamilton cycle, unless (n, k) = (5, 2), which is the exceptional
Petersen graph. This result followed a long line of work (see, e.g. [CF02, Che03, Joh11, MNW21]),
and it resolved a problem that was open for 50 years.
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In this work, we apply the methods developed in [MMN23] to Schrijver graphs and s-stable
Kneser graphs, which yields the following new results.

Theorem 1. For any k ≥ 1, s ≥ 2 and n ≥ sk + 1, the s-stable Schrijver graph S(n, k, s) has a
Hamilton cycle. In particular, the Schrijver graph S(n, k) = S(n, k, 2) has a Hamilton cycle.

We also provide an efficient algorithm for computing these cycles.

Theorem 2. Let k ≥ 1, s ≥ 2 and n ≥ sk+ 1. There is an algorithm for computing a Hamilton
cycle in S(n, k, s) that takes time O(n) to compute the next vertex on the cycle.

The initialization time and memory required by our algorithm is also O(n). The assumption
s ≥ 2 in Theorem 2 is important. In fact, we do not know any algorithm with running time
polynomial in n and k for computing a Hamilton cycle in S(n, k, 1) = K(n, k), even though
by the aforementioned results [MMN23], K(n, k) is known to have a Hamilton cycle (unless
(n, k) = (5, 2)).

We implemented the algorithm given by Theorem 2 in C++, and made it available for
experimentation and download on the Combinatorial Object Server website [cos].

After submitting this manuscript, we learnt that Theorem 1 was proved independently by
Ledezma and Pastine [LP24].

1.1. Outline of this paper. In Sections 2 and 3 we present the proofs of Theorem 1 and 2,
respectively, for the special case of Schrijver graphs S(n, k) = S(n, k, 2). With minimal adapta-
tions, these proofs can be adjusted to also work for the general case of s-stable Kneser graphs
for any s ≥ 2. We explain those adaptations in Section 4.

2. Proof of Theorem 1 for Schrijver graphs S(n, k)

As mentioned before, we apply the methods developed in [MMN23] to construct a Hamilton
cycle in the Schrijver graph S(n, k). The construction proceeds in two steps: In the first step we
construct a cycle factor in the graph, i.e., a collection of disjoint cycles that together visit all
vertices. In the second step we connect the cycles of the factor to a single Hamilton cycle.

2.1. Cycle factor construction and gliders.

2.1.1. Preliminaries. We interpret vertices of the Schrijver graph S(n, k) as bitstrings by con-
sidering the corresponding characteristic vectors. For every k-element subset A of [n], this is a
bitstring of length n with exactly k many 1s at the positions corresponding to the elements of A.
For example, the vertex A = {2, 7, 9} of S(9, 3) is represented by the bitstring x = 010000101.
Throughout this paper, we consider the indices into these bitstrings modulo n, i.e., xn+i = xi.
By definition of Schrijver graphs, no two 1s in x are next to each other (considered cycli-
cally), or in other words, every 1-bit is surrounded by 0-bits. We write Xn,k for the set of
all bitstrings that encode vertices of S(n, k). A straightforward counting argument shows
that |Xn,k| =

(n−k+1
k

)
−
(n−k−1
k−2

)
= n

n−k
(n−k
k

)
(see [Kap43]). For any bitstring x and any

integer r ≥ 0, we write xr for the r-fold concatenation of x with itself.
For two strings x and y over any alphabet, we write x ≺ y if x is lexicographically strictly

smaller than y, and for a set of strings X we write lexminX for the lexicographically least string
in X, i.e., for the unique string x ∈ X that satisfies x ≺ y for all y ∈ X \ {x}.

2.1.2. Cycle factor construction. For a bitstring x ∈ Xn,k, we write σ(x) for the string obtained
from x by a cyclic right shift by 1 position. We define the necklace of x by

〈x〉 := {σi(x) | i ≥ 0},

i.e., the necklace 〈x〉 is the set of all cyclic shifts of x.
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As x ∈ Xn,k has no two 1s next to each other, (x, σ(x)) is an edge in the Schrijver graph.
Consequently, for a bitstring x and r := |〈x〉|, the sequence

C(x) :=
(
x, σ(x), σ2(x), ...σr−1(x)

)
(1a)

defines a cycle in S(n, k); see the top part of Figure 1. We thus obtain a cycle factor in S(n, k)
by

Cn,k := {C(x) | x ∈ Xn,k}. (1b)

2.1.3. Matched and unmatched bits. The operation x 7→ σ(x) can also be described as follows:
To create the string σ(x) from x, every 1-bit at some position i in x is transposed with the 0-bit
immediately to the right of it, i.e., at position i + 1. Given x ∈ Xn,k, we refer to the bits at
positions µ(x) := {i | xi = 1 or xi−1 = 1} ⊆ [n] as matched, and to the bits at positions µ(x) :=
[n] \ µ(x) = {i | xi = 0 and xi−1 = 0} as unmatched. The motivation for this terminology will
become clear momentarily. We denote unmatched bits in x as -. For example, we write x =
010001001010101 = 010--10-1010101 and we have µ(x) = {1, 2, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15}
and µ(x) = {4, 5, 8}. Note that |µ(x)| = 2k and therefore |µ(x)| = n − 2k, so x has exactly
n− 2k many -s. On the right hand side of Figure 1, matched bits are colored, and unmatched
bits are white.

We refer to any maximal (cyclic) substring of matched bits in x ∈ Xn,k as a block and to
any maximal (cyclic) substring of unmatched bits as a gap. The length of a block or gap is
the number of bits belonging to the block or gap, respectively. Clearly, the length of a block is
always even. For example, the bitstring x from before has two blocks of lengths 2 and 10, and
two gaps of lengths 2 and 1.

2.1.4. Gliders. We consider every substring 10 in x as an entity called a glider . Specifically, the
set of all gliders in x is the set

Γ(x) :=
{
(i, i+ 1) | xi = 1 and xi+1 = 0

}
. (2)

For example, for x = 010--10-1010101 from before we have Γ(x) = {(2, 3), (6, 7), (9, 10), (11, 12),
(13, 14), (15, 1)}.

The motivation for the word ‘glider’ becomes clear when comparing the gliders in x with those
in σ(x), and when interpreting one application of σ (i.e., moving one step along the cycle C(x)) as
one unit of time moving forward. Indeed, if (i, i+ 1) ∈ Γ(x), then we have (i+ 1, i+ 2) ∈ Γ(σ(x)),
i.e., a glider that occupies positions i and i+ 1 in x moves to positions i+ 1 and i+ 2 after one
time step; see Figure 1. We can thus view these pairs of matched bits as entities that change
position over time, namely they move one position to the right with each time step, i.e., their
‘speed’ is 1.

2.1.5. Connection to parenthesis matching in Kneser graphs. The aforementioned mapping x 7→
σ(x) can be generalized to yield a more general mapping x 7→ f(x) that recovers precisely the
construction of a cycle factor in K(n, k) used in [MMN23], which agrees with the one before on
the Schrijver subgraph S(n, k) ⊆ K(n, k), as follows: To create the string f(x) from x, where x
now is an arbitrary bitstring of length n with k many 1s, every 1-bit at some position i in x is
transposed with the 0-bit that terminates the shortest possible substring at positions i+1, i+2, . . .
that has strictly more 0s than 1s; see the bottom part of Figure 1. An alternative and equivalent
definition of f is to interpret the 1s in x as opening brackets and the 0s as closing brackets, to
match pairs of opening and closing brackets in the natural way (leaving n− 2k closing brackets
unmatched), and to transpose every bit with the corresponding matched partner to obtain f(x).
This idea, pioneered by Greene and Kleitman [GK76] in another context, is often referred to as
parenthesis matching, which explains our choice of terminology for matched and unmatched bits
before. In fact, the paper [MMN23] describes a more general partition of groups of matched
bits into gliders that works in general Kneser graphs, and then different gliders may move at
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x = 1 0 0 0

...

-1 1- - 1 0 01 01

f time

speed 1speed 2 speed 3

x = 0 0 01 1- - 1 1 00 01

σ time

- 1

C(x)

K(15, 6)

S(15, 6)

...

Figure 1. A cycle in the Schrijver graph S(15, 6) constructed from the mapping σ (top),
and a cycle in the Kneser graph K(15, 6) constructed from the more general mapping f .
The cycle in S(15, 6) is shown completely, whereas only the first 15 vertices of the cycle
in K(15, 6) are displayed. On the left, each vertex is represented by a bitstring, with 1-bits
colored black and 0-bits colored white. The vertices are printed from top to bottom in the
order of the cycle. The right-hand side shows the interpretation of certain groups of bits
as gliders, and their movement over time. Matched bits belonging to the same glider are
given the same color, with the opaque filling given to 1-bits, and the transparent filling
given to 0-bits.

different speeds; see the bottom part of Figure 1. For our discussion of Schrijver graphs this
more general definition of gliders is not needed.

2.2. Gluing the cycles together. We now show how to connect the cycles in the factor Cn,k
defined in (1) together to a single Hamilton cycle of S(n, k). Each joining step proceeds by
gluing together two cycles from the factor to one cycle via a 4-cycle.

2.2.1. Connectors. Given two bitstrings x, y ∈ Xn,k, we refer to the pair (x, y) as a connector ,
if x and σ−1(y) agree in all but three positions i, i + 1, i + 2 such that xi,i+1,i+2 = 10- and
σ−1(y)i,i+1,i+2 = -10, i.e., we have [

x
σ−1(y)

]
=
[
· · · 1 0 - · · ·
· · · - 1 0 · · ·

]
, (3)

where the vertically aligned · · · stand for substrings in which x and σ−1(y) agree. In other
words, x and σ−1(y) have the same gliders, except that the rightmost glider in a block of x is
‘pushed’ to the right by one position, i.e., it is transposed with the unmatched bit to its right.

We write Xn,k for the set of all connectors. Note that a bitstring z ∈ Xn,k may be part of
several different connectors. Specifically, if there are p gaps in z, then z is contained in exactly p
connectors of the form (z, y) and p connectors of the form (x, z).
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Lemma 3. For any connector (x, y) ∈ Xn,k, the sequence C4(x, y) := (x, σ(x), σ(y), y) is a
4-cycle in the Schrijver graph S(n, k).

Proof. We already know that (x, σ(x)) and (y, σ(y)) are edges in S(n, k). Therefore, it suffices
to prove that (x, y) is an edge in S(n, k), as this will imply that (σ(x), σ(y)) is also an edge. Let
i, i + 1, i + 2 be such that xi,i+1,i+2 = 10- and σ−1(y)i,i+1,i+2 = -10. From (3) we see that y
agrees with σ(x) in all positions but i+ 1, i+ 2, i+ 3, specifically that σ(x)i+1,i+2,i+3 = 10- and
yi+1,i+2,i+3 = -10. As σ(x) and x have no 1s at the same position, and xi+2 = - (this is the
position where y has a 1), we obtain that y and x have no 1s at the same position, i.e., (x, y) is
indeed an edge in S(n, k). �

Observe that if (x, y) ∈ Xn,k and C(x) and C(y) are two distinct cycles in the factor Cn,k
defined in (1), then the symmetric difference of the edge sets

(
C(x) ∪C(y)

)
∆C4(x, y) is a single

cycle in S(n, k) on the same vertex set as C(x) ∪ C(y), i.e., the 4-cycle ‘glues’ two cycles from
the factor together to a single cycle.

We define
Yn,k := {x ∈ Xn,k | x1 = - and xn = 0} = {x ∈ Xn,k | 1 ∈ µ(x) and n ∈ µ(x)}. (4)

These are vertices of S(n, k) in which the first bit is unmatched and the last bit is matched
(specifically, a matched 0-bit). Any x ∈ Yn,k has the form

x = -γ1(10)β1/2 -γ2(10)β2/2 · · · -γr (10)βr/2 (5a)
for integers r ≥ 1, γ1, . . . , γr > 0, and even β1, . . . , βr > 0. In words, γi is the length of the ith
gap in x, and βi is the length of the ith block in x. We then define

L(x) := (−βr, γr,−βr−1, γr−1, . . . ,−β2, γ2,−β1, γ1), (5b)
i.e., L(x) records the lengths of blocks and gaps in x from right to left, and the lengths of blocks
are given a negative sign. For example, for the bitstring x = ----10101010---10-1010--101010 ∈
Y30,10 we have L(x) = (−6, 2,−4, 1,−2, 3,−8, 4).

For any x ∈ Xn,k we define L(〈x〉) as the lexicographically smallest string L(x′) over all
x′ ∈ 〈x〉 ∩ Yn,k, i.e.,

L(〈x〉) := lexmin
{
L(x′) | x′ ∈ 〈x〉 ∩ Yn,k

}
. (5c)

In words, we consider all cyclic shifts x′ of x that belong to the set Yn,k, and take the lexi-
cographically least string L(x′) among them. Clearly, cyclic shifts of x ∈ Yn,k yield different
cyclic shifts of L(x), all starting with a negative number. In the example from before, we
obtain L(〈x〉) = (−8, 4,−6, 2,−4, 1,−2, 3). Informally, for a given x ∈ Xn,k, the definition L(〈x〉)
locates the (cyclically) longest possible block in x, preceded by the shortest possible gap, preceded
by the longest possible block, preceded by the shortest possible gap, etc., which motivates the
negative signs in (5b) and the right-to-left reading.

We will also need the following variant of the definition (5b) from before. For any x ∈ Xn,k

and any position p ∈ [n] with xp,p+1 = 0-, i.e., the pth bit of x is matched and the (p+ 1)st bit
is unmatched, we have σ−p(x) ∈ Yn,k and may thus define

L(x, p) := L(σ−p(x)). (6)
In words, this is the sequence of lengths of blocks and gaps in x starting from position p read in
the right-to-left direction (with negative signs for block lengths).

2.2.2. Auxiliary graph. Our strategy is to join the cycles of the factor Cn,k by repeatedly gluing
pairs of them together via connectors, as described before. For any set of connectors U ⊆ Xn,k
we define a graph Hn,k[U ] as follows: The nodes of Hn,k[U ] are the cycles of the factor Cn,k.
Furthermore, for any connector (x, y) ∈ U for which C(x) and C(y) are distinct cycles, we add an
edge that connects C(x) and C(y) to the graph Hn,k[U ]. To obtain a Hamilton cycle in S(n, k),
we require two things: The graph Hn,k[U ] must be connected. Furthermore, we require that any
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p+ 1 + γ′ + β′
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γ β′
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1 0
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------1 0

γ + 1

γ′ = 1

(a)

(b)

(c)

x =
σ−1(y) =

x =
σ−1(y) =

1
1

p+ 2 + β′

p+ 2 + β′

P (x) = (−β′, γ′,−β, γ, . . .)

P (τ(y)) = (−β′, γ′ − 1, . . .)

P (τ(y)) = (−(β′ + 2), 1,−(β − 2), . . .)

P (x) = (−β′, 1,−β, γ, . . .)

P (x) = (−β′, 1,−2, γ, . . .)

P (τ(y)) = (−(β′ + 2), γ + 1, . . .)

≺

≺

≺

β − 2

Figure 2. Illustration of the proof of Lemma 4.

two of the 4-cycles C4(x, y) and C4(x′, y′) with (x, y), (x′, y′) ∈ U used for the joining are edge-
disjoint. To ensure the second property, it is enough to guarantee that C4(x, y) and C4(x′, y′) do
not have an edge in common on one of the cycles of the factor Cn,k. This condition is equivalent
to {x, y} ∩ {x′, y′} = ∅, and if it holds then we call the connectors (x, y) and (x′, y′) disjoint. We
therefore require a set of pairwise disjoint connectors U ⊆ Xn,k such that Hn,k[U ] is a connected
graph. Note the following subtlety: There may be two connectors (x, y), (x′, y′) ∈ U with
x′ = σ(x) and y′ = σ(y), which by our definition are disjoint, even though the 4-cycles C4(x, y)
and C4(x′, y′) share the edge (x′, y′) = (σ(x), σ(y)). However, in the joining process, only
one of the two 4-cycles will be used, as they connect the same pair of cycles C(x) = C(x′)
and C(y) = C(y′).

A set of connectors with the aforementioned properties can be defined explicitly for any fixed
integer p ∈ [n] by

Up :=
{
(x, y) ∈ Xn,k | xp,p+1,p+2 = 10- and σ−1(y)p,p+1,p+2 = -10

}
; (7)

recall (3). In words, these are connectors in which the ‘pushing’ of a glider occurs at position p.

Lemma 4. For any k ≥ 1, n ≥ 2k + 1, and p ∈ [n], let Up ⊆ Xn,k be the set of connectors
defined in (7). The connectors in Up are pairwise disjoint, and Hn,k[Up] is a connected graph.

Proof. Consider two connectors (x, y), (x′, y′) ∈ Up with x 6= x′ which implies that y 6= y′. Clearly,
we have y 6= x and y′ 6= x′. From (7) we also see that xp+2 = - and σ−1(y′)p+1 = y′p+2 = 1,
implying that x 6= y′, and symmetrically that x′p+2 = - and σ−1(y)p+1 = yp+2 = 1, implying
that x′ 6= y. This proves that {x, y} ∩ {x′, y′} = ∅, as desired.

It remains to prove that Hn,k[Up] is connected. We say that a vertex x ∈ Xn,k is connectable, if
xp,p+1,p+2 = 10-. By (7), this means that there is a unique corresponding connector (x, y) ∈ Up.
For any connectable vertex x with at least two blocks, we let β be the length of the block ending
at position p+ 1 in x, γ be the length of the gap to the left of it, γ′ be the length of the gap to
the right of it, and we let β′ be the length of the block to the right of this gap; see Figure 2 (a).



HAMILTONICITY OF SCHRIJVER GRAPHS AND STABLE KNESER GRAPHS 7

We define
P (x) := L(x, p+ 1 + γ′ + β′) (8)

with L(x, p) as defined in (6). In words, P (x) is obtained by recording the lengths of blocks and
gaps in x from right to left, starting at the first block strictly to the right of position p+ 1 in x,
where block lengths receive an additional negative sign. We thus have P (x) = (−β′, γ′,−β, γ, . . .).
We also define the connectable vertex

τ(y) :=


σ−2(y) if γ′ > 1,
σ(y) if γ′ = 1 and β > 2,
σγ+1(y) if γ′ = 1 and β = 2;

(9)

see Figure 2. It satisfies

P (τ(y)) =
{

(−β′, γ′ − 1, . . .) if γ′ > 1,
(−(β′ + 2), . . .) if γ′ = 1,

(10)

implying that P (τ(y)) ≺ P (x), i.e., P (τ(y)) is lexicographically smaller than P (x). This shows
that we can move in the graph Hn,k[Up] along lexicographically decreasing connectors, to the
lexicographically least connectable vertex, which lies in the cycle C(-n−2k(10)k), i.e., it has only
a single block and a single gap (all gliders are adjacent). This proves that Hn,k[Up] is indeed
connected, which completes the proof. �

We are now ready to present the proof of Theorem 1 for Schrijver graphs S(n, k).

Proof of Theorem 1 for Schrijver graphs S(n, k) = S(n, k, 2). By Lemma 4, the set Up ⊆ Xn,k

of connectors defined in (7) for any fixed value of p ∈ [n] has the property that the connectors
in Up are pairwise disjoint, and Hn,k[Up] is a connected graph. Let T be a minimal subset of Up
such that Hn,k[T ] is connected, i.e., this graph is a spanning tree. As the connectors in Up are
pairwise disjoint, no two of the 4-cycles C4(x, y), (x, y) ∈ T , defined in Lemma 3 have an edge
in common with one of the cycles of the factor Cn,k in S(n, k) defined in (1). Furthermore, by
the minimality of T , no two of these 4-cycles have an edge in common that does not lie on one
of the cycles of the factor (otherwise, T would contain two edges connecting the same pair of
nodes), so these 4-cycles are pairwise edge-disjoint. Consequently, as Hn,k[T ] is connected, the
symmetric difference of the edge set of the cycle factor Cn,k with the 4-cycles C4(x, y), (x, y) ∈ T ,
is a Hamilton cycle in S(n, k). �

3. Proof of Theorem 2 for Schrijver graphs S(n, k)

To turn the proof presented in the previous section into an efficient algorithm, we first define
an explicit spanning tree in the graph Hn,k[Up]. To define such a spanning tree, we select exactly
one connectable vertex x on each cycle of the factor Cn,k, namely the one with lexicographically
least value of P (x), i.e.,

Tp := {(x, y) ∈ Up | x has at least 2 blocks and P (x) = L(〈x〉)}, (11)
where P (x) and L(〈x〉) are defined in (8) and (5), respectively; see Figure 3.

Lemma 5. For any k ≥ 1, n ≥ 2k + 1 and p ∈ [n], let Tp ⊆ Up ⊆ Xn,k be the set of connectors
defined in (11). Then Hn,k[Tp] is a spanning tree of Hn,k[Up].

Proof. We consider the edges (C(x), C(y)) of Hn,k[Tp] for connectors (x, y) ∈ Tp as being oriented
from C(x) to C(y).

We first show that Hn,k[Tp] is connected. We have argued before that for (x, y) ∈ Tp we
have P (τ(y)) ≺ P (x) (recall (10)). Let z be the lexicographically least connectable vertex
on the cycle C(τ(y)), i.e., we have P (z) = P (τ(y)) or P (z) ≺ P (τ(y)). Combining these
inequalities shows that P (z) ≺ P (x). This shows that we can move in the graph Hn,k[Tp] along
lexicographically decreasing connectors to the lexicographically least connectable vertex, which
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(-14, 3)

(-12, 2, -2, 1) (-12, 1, -2, 2)

(-10, 1, -2, 1, -2, 1)(-10, 2, -4, 1)

(-8, 2, -6, 1)

(-10, 1, -4, 2)

(-8, 1, -4, 1, -2, 1)(-8, 1, -2, 1, -4, 1)

(-6, 1, -6, 1, -2, 1)(-6, 1, -4, 1, -4, 1)

(-8, 1, -6, 2)

Figure 3. Illustration of the tree Tp for n = 17 and k = 7. Each node of Hn,k[Tp],
i.e., each cycle C(x) ∈ Cn,k is represented by the string L(〈x〉), corresponding to the
lexicographically least connectable vertex on that cycle. The edges are oriented to point
towards the lexicographically smaller string. Horizontal and vertical edges correspond to
the first and second case in (10), respectively.

lies in the cycle C(-n−2k(10)k) (corresponding to the bottom-right vertex in Figure 3). This
proves that Hn,k[Tp] is indeed connected.

It remains to argue that Hn,k[Tp] is acyclic. Firstly, there can be no cycles in which the
orientations of all edges agree, because of the lexicographically decreasing connectors. Secondly,
if there was a cycle in which not all edges are oriented the same, then such a cycle would
contain a node of out-degree 2, but in our graph Hn,k[Tp], every node has out-degree exactly 1
by definition, except the node C(-n−2k(10)k) which has out-degree 0 (as all vertices have only a
single block). This proves that Hn,k[Tp] is indeed acyclic. �

Proof of Theorem 2 for Schrijver graphs S(n, k) = S(n, k, 2). Our algorithm computes the
Hamilton cycle that corresponds to the spanning tree Hn,k[Tp] guaranteed by Lemma 5. It
maintains the current vertex x ∈ Xn,k, and a variable d ∈ {−1,+1} that controls the current
direction of movement along the cycle. Specifically, the next vertex along the cycle C(x) is
obtained by setting

x← σd(x) =
{
σ(x) if d = +1,
σ−1(x) if d = −1,

(12)

i.e., in the first case we perform a cyclic right shift (move forward along the cycle) and in the
second case the inverse operation, namely a cyclic left shift (move backward along the cycle).
Clearly, these operations take linear time O(n).

x′ y′

σ(x′) σ(y′)

σ σ

C4(x
′, y′)

(i)

(ii)

(iii)
(iv)

C(x′) C(y′)

Figure 4. Illustration of the
instructions (i)–(iv).

Furthermore, in each step, the algorithm has to check whether
the current vertex x equals one of the four vertices on a
cycle C4(x′, y′) = (x′, σ(x′), σ(y′), y′) for one of the connec-
tors (x′, y′) ∈ Tp (recall Lemma 3), and whether the next step
according to (12) would move along an edge of this cycle. This
is detected by the following conditions, followed by the corre-
sponding alternative assignments instead of (12); see Figure 4:
(i) if x = x′ and d = +1, then we set x← y′, d← −1;
(ii) if x = y′ and d = +1, then we set x← x′, d← −1;
(iii) if x = σ(x′) and d = −1, then we set x← σ(y′), d← +1;
(iv) if x = σ(y′) and d = −1, then we set x← σ(x′), d← +1.
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S(11, 5) S(9, 3) S(15, 6) S(17, 7) S(20, 6, 3) S(23, 5, 4) S(28, 5, 5)

Figure 5. Hamilton cycles in different s-stable Kneser graphs computed by the algorithm
from Section 3.

To decide whether (x′, y′) ∈ Tp, we need to check
whether P (x′) = M(〈x′〉) (recall (11)), i.e., we need to compute
the lexicographically smallest rotation of a string of length ≤ n, which can be done using Booth’s
O(n) algorithm [Boo80]. �

For more details, see the C++ implementation of our algorithm [cos]. Figure 5 shows several
examples of Hamilton cycles computed by our algorithm.
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4. Generalizing the proofs to s-stable Kneser graphs S(n, k, s)

The proofs of Theorems 1 and 2 presented in the previous sections can be generalized
straightforwardly from the case s = 2 (Schrijver graphs) to the more general case s ≥ 2 (s-stable
Kneser graphs), as follows.

We write Xn,k,s for the vertices of S(n, k, s) in their bitstring representation. It was shown
in [MS08] that |Xn,k,s| = n

n−sk
(n−sk

k

)
. The construction of the cycle factor Cn,k given in

Section 2.1.2 remains unchanged, but we slightly generalize the definition of matched bits
described in Section 2.1.3. Each 1-bit in x ∈ Xn,k,s is matched to the next s − 1 many 0s to
the right of it, so sk bits in total are matched (k of them 1s, and (s − 1)k of them 0s) and
the remaining n− sk bits are unmatched. Consequently a glider in x has the form 10s−1 and
occupies s positions i, i+ 1, . . . , i+ s− 1 (cf. (2)). Furthermore, a connector has the form[

x
σ−1(y)

]
=
[
· · · 1 0s−1 - · · ·
· · · - 1 0s−1 · · ·

]
(cf. (3)). The decomposition (5a) generalizes accordingly to

x = -γ1(10s−1)β1/s -γ2(10s−1)β2/s · · · -γr (10s−1)βr/s,

and the remaining definitions in Section 2.2.1 remain unchanged. The definition (7) generalizes
to

Up :=
{
(x, y) ∈ Xn,k | xp,p+1,...,p+s = 10s−1- and σ−1(y)p,p+1,...,p+s = -10s−1},

and then the proof of Lemma 4 goes through with minimal adjustments, specifically by general-
izing (8) and (9) to

P (x) := L(x, p+ s− 1 + γ′ + β′)
and

τ(y) :=


σ−2(y) if γ′ > 1,
σs−1(y) if γ′ = 1 and β > s,

σγ+s−1(y) if γ′ = 1 and β = s,

respectively. The remainder of the proofs remains unchanged.
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