## Kneser graphs are Hamiltonian

Torsten Mütze (Warwick + Prague)
joint with Arturo Merino (TU Berlin) and Namrata (Warwick) extended abstract in [STOC 2023]


## Introduction

- Kneser graph $K(n, k)$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets

$$
A \cap B=\emptyset
$$

## Introduction

- Kneser graph $K(n, k)$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets $A \cap B=\emptyset$


Petersen graph $K(5,2)$

## Introduction

- Kneser graph $K(n, k)$
vertices $=\binom{[n]}{k}$
edges $=$ pairs of disjoint sets $A \cap B=\emptyset$


Petersen graph $K(5,2)$

- we assume $k \geq 1$ and $n \geq 2 k+1$ (otherwise trivial)


## Basic properties

- [Lovász 1978]: proof of Kneser's conjecture

$$
\chi(K(n, k))=n-2 k+2
$$

## Basic properties

- [Lovász 1978]: proof of Kneser's conjecture

$$
\chi(K(n, k))=n-2 k+2
$$

- used Borsuk-Ulam theorem $\longrightarrow$ topological combinatorics [Bárány 1978], [Greene 2002], [Ziegler 2002], [Matoušek 2004]


## Basic properties

- [Lovász 1978]: proof of Kneser's conjecture

$$
\chi(K(n, k))=n-2 k+2
$$

- used Borsuk-Ulam theorem $\longrightarrow$ topological combinatorics [Bárány 1978], [Greene 2002], [Ziegler 2002], [Matoušek 2004]
- 

\alpha(K(n, k))=\binom{n-1}{k-1}
\]

## Basic properties

- vertex-transitive


## Basic properties

- vertex-transitive
- regular with degree $\binom{n-k}{k}$


## Basic properties

- vertex-transitive
- regular with degree $\binom{n-k}{k}$
- cliques of size $c$ if and only if $n \geq c k$


## Basic properties

- vertex-transitive
- regular with degree $\binom{n-k}{k}$
- cliques of size $c$ if and only if $n \geq c k$
- 4-cycles if and only if $n \geq 2 k+2$


## Basic properties

- vertex-transitive
- regular with degree $\binom{n-k}{k}$
- cliques of size $c$ if and only if $n \geq c k$
- 4-cycles if and only if $n \geq 2 k+2$
- 'dense' if $n$ is large w.r.t. $k$
- 'sparse' if $n$ is small w.r.t. $k$


## Basic properties

- vertex-transitive
- regular with degree $\binom{n-k}{k}$
- cliques of size $c$ if and only if $n \geq c k$
- 4-cycles if and only if $n \geq 2 k+2$
- 'dense' if $n$ is large w.r.t. $k$
- 'sparse' if $n$ is small w.r.t. $k$
- sparsest case $n=2 k+1$


## Basic properties

- vertex-transitive
- regular with degree $\binom{n-k}{k}$
- cliques of size $c$ if and only if $n \geq c k$
- 4-cycles if and only if $n \geq 2 k+2$
- 'dense' if $n$ is large w.r.t. $k$
- 'sparse' if $n$ is small w.r.t. $k$
- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]


## Hamilton cycles

- long conjectured to have a Hamilton cycle


## Hamilton cycles

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5,2)$


## Hamilton cycles

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5,2)$
- Conjecture [Lovász 1970]:
- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$ ).


## Hamilton cycles

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5,2)$
- Conjecture [Lovász 1970]:
- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$ ).
- Every connected vertex-transitive graph admits a Hamilton path.


## Hamilton cycles

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5,2)$
- Conjecture [Lovász 1970]:
- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$ ).
- Every connected vertex-transitive graph admits a Hamilton path.
- unknown even for specific and explicit families of graphs (e.g., Cayley graphs)


## Hamilton cycles

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5,2)$
- Conjecture [Lovász 1970]:
- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$ ).
- Every connected vertex-transitive graph admits a Hamilton path.
- unknown even for specific and explicit families of graphs (e.g., Cayley graphs)
- Kneser graphs: should be easier for dense cases


## Hamilton cycles: dense cases

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$


## Hamilton cycles: dense cases

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$


## Hamilton cycles: dense cases

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$


## Hamilton cycles: dense cases

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$,


## Hamilton cycles: dense cases

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$, uses Baranyai's partition theorem for $K_{n}^{k}$


## Hamilton cycles: dense cases

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$, uses Baranyai's partition theorem for $K_{n}^{k}$
- [Y. Chen 2000]: $n \geq(1+o(1)) 2.62 \cdot k$


## Hamilton cycles: dense cases

- [Heinrich, Wallis 1978]: $n \geq(1+o(1)) k^{2} / \ln 2$
- [B. Chen, Lih 1987]: $n \geq(1+o(1)) k^{2} / \log k$
- [Y. Chen 2000]: $n \geq 3 k$
- [Y. Chen+Füredi 2002]: short proof for $n=c k, c \in\{3,4, \ldots$, uses Baranyai's partition theorem for $K_{n}^{k}$
- [Y. Chen 2000]: $n \geq(1+o(1)) 2.62 \cdot k$ uses Baranyai, Kruskal-Katona, Ray-Chaudhuri-Wilson


## Hamilton cycles: sparse cases

- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]


## Hamilton cycles: sparse cases

- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.


## Hamilton cycles: sparse cases

- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K(5,2) \text { is Petersen graph }
$$

## Hamilton cycles: sparse cases

- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K(5,2) \text { is Petersen graph }
$$

- 


## Hamilton cycles: sparse cases

- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K(5,2) \text { is Petersen graph }
$$

- 
- 


## Hamilton cycles: sparse cases

- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K(5,2) \text { is Petersen graph }
$$

- 
- 
- 


## References

## The Rugby Footballers of Croam

## Michael Mather

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte
Received November 7, 1974
The vertices of the graph $O_{s}$ are indexed by the 7 -subsets of a 15 -set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in $O_{8}$.

The following Hamiltonian circuit for $\mathrm{O}_{8}$ was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.


1. Guy H. J. Meredith and E. Keith Lloyd, The Footballers of Croam, J. Combinatorial Theory B 15 (1973), 161-166.

## References

## The Rugby Footballers of Croam

## Michael Mather

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte
Received November 7, 1974
The vertices of the graph $O_{8}$ are indexed by the 7 -subsets of a 15 -set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in $O_{8}$.

The following Hamiltonian circuit for $O_{8}$ was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.


1. Guy H. J. Meredith and E. Keith Lloyd, The Footballers of Croam, J. Combinatorial Theory B 15 (1973), 161-166.

## The Rugby Footballers of Croam

## Michael Mather

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte
Received November 7, 1974
The vertices of the graph $O_{8}$ are indexed by the 7 -subsets of a 15 -set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in $O_{8}$.

The following Hamiltonian circuit for $O_{8}$ was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.
1234567: $\quad 9 \quad 110$

| 7 | 12 | 8 | 15 | 9 | 5 | 10 | 6 | 15 | 7 | 3 | 8 | 4 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 13 |  |  |  |  |  |  |  |  |  |  |  |  |

$\begin{array}{llllllllllllll}6 & 14 & 7 & 2 & 10 & 3 & 12 & 4 & 13 & 5 & 1 & 6 & 2 & 10 \\ 3 & 12\end{array}$
$\begin{array}{lllllllllllllll}4 & 15 & 5 & 1 & 11 & 2 & 15 & 13 & 2 & 3 & 6 & 4 & 12 & 5 & 13\end{array} 11$
$\begin{array}{llllllllllllllll}3 & 12 & 5 & 2 & 10 & 6 & 14 & 13 & 11 & 7 & 8 & 11 & 4 & 10 & 1 & 9\end{array}$
$\begin{array}{lllllllllllllll}13 & 5 & 12 & 4 & 11 & 15 & 4 & 12 & 15 & 13 & 5 & 14 & 6 & 15 & 9\end{array} 4$
$\begin{array}{lllllllllllllll}12 & 5 & 13 & 8 & 15 & 11 & 10 & 9 & 4 & 13 & 7 & 15 & 8 & 3 & 14 \\ 6\end{array}$
$\begin{array}{llllllllllllllll}9 & 7 & 2 & 8 & 5 & 10 & 6 & 1 & 7 & 4 & 13 & 5 & 8 & 9 & 5 & 8\end{array}$
$\begin{array}{llllllllllllll}11 & 14 & 15 & 7 & 10 & 13 & 9 & 12 & 4 & 11 & 14 & 6 & 12 & 5 \\ 8 & 15\end{array}$
$\begin{array}{lllllllllllllll}7 & 9 & 6 & 7 & 13 & 12 & 3 & 4 & 7 & 3 & 15 & 6 & 3 & 13 & 4\end{array} 14$
$\begin{array}{lllllllllllllll}6 & 4 & 11 & 7 & 4 & 2 & 12 & 3 & 13 & 4 & 5 & 13 & 4 & 12 & 1\end{array} 11$
$\begin{array}{llllllllllllllll}14 & 5 & 13 & 1 & 7 & 10 & 12 & 15 & 5 & 8 & 3 & 6 & 2 & 4 & 11 & 14\end{array}$

| 10 | 13 | 9 | 12 | 1 | 11 | 15 | 9 | 14 | 3 | 13 | 2 | 12 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllllll}4 & 14 & 3 & 10 & 2 & 8 & 1 & 5 & 11 & 4 & 10 & 3 & 9 & 12 \\ 6 & 2\end{array}$
$\begin{array}{llllllllllllll}5 & 11 & 4 & 10 & 3 & 7 & 14 & 6 & 12 & 5 & 11 & 4 & 8 & 13 \\ 7 & 1\end{array}$
$\begin{array}{lllllllllllllll}6 & 12 & 5 & 9 & 2 & 8 & 12 & 7 & 10 & 6 & 9 & 12 & 8 & 11 & 7\end{array} 10$
$\begin{array}{llllllllllllllll}1 & 9 & 13 & 8 & 12 & 7 & 6 & 12 & 7 & 13 & 8 & 1 & 9 & 3 & 10 & 5\end{array}$
$\begin{array}{lllllllllllllll}11 & 6 & 12 & 7 & 15 & 8 & 4 & 9 & 1 & 10 & 5 & 2 & 6 & 11 & 9 \\ 12\end{array}$
$\begin{array}{lllllllllllllll}10 & 4 & 2 & 14 & 12 & 2 & 4 & 6 & 7 & 10 & 14 & 15 & 11 & 5 & 2\end{array} 11$
$\begin{array}{lllllllllllll}8 & 9 & 10 & 12 & 13 & 14 & 15 & 1 & 14 & 15 & 6 & 8 & 12 \\ 7 & 9 & 14\end{array}$
$\begin{array}{lllllllllllllll}5 & 10 & 1 & 6 & 8 & 5 & 14 & 2 & 7 & 14 & 6 & 9 & 3 & 8 & 11 \\ 7\end{array}$
$\begin{array}{lllllllllllllll}10 & 13 & 9 & 12 & 15 & 11 & 14 & 4 & 13 & 1 & 7 & 15 & 5 & 14 & 2\end{array} 10$
$\begin{array}{llllllllllllll}1 & 7 & 15 & 1 & 12 & 2 & 10 & 13 & 2 & 6 & 8 & 2 & 7 & 10 \\ 2 & 8\end{array}$
$\begin{array}{llllllllllllllll}14 & 3 & 13 & 15 & 4 & 12 & 10 & 4 & 15 & 10 & 11 & 15 & 10 & 14 & 4 & 11\end{array}$
$\begin{array}{llllllllllllllll}1 & 7 & 15 & 5 & 8 & 10 & 12 & 2 & 6 & 4 & 5 & 1 & 4 & 9 & 3 & 8\end{array}$
$\begin{array}{llllllllllllllll}7 & 3 & 8 & 4 & 9 & 5 & 11 & 12 & 5 & 15 & 4 & 9 & 3 & 8 & 2 & 7\end{array}$
$\begin{array}{lllllllllllll}1 & 6 & 12 & 13 & 15 & 5 & 14 & 4 & 10 & 3 & 9 & 2 & 13=2345678, \text { etc. }\end{array}$

## Hamilton cycles: sparse cases

- sparsest case $n=2 k+1$
- $O_{k}:=K(2 k+1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.

$$
O_{2}=K(5,2) \text { is Petersen graph }
$$

- 
- 
- 


## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.


## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:


## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $K\left(2 k+2^{a}, k\right)$ has a Hamilton cycle for all $k \geq 3$ and $a \geq 0$.


## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $K\left(2 k+2^{a}, k\right)$ has a Hamilton cycle for all $k \geq 3$ and $a \geq 0$.
- open: $2 k+1 \leq n \leq(1+o(1)) 2.62 k$ where $n \neq 2 k+2^{a}$


## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $K\left(2 k+2^{a}, k\right)$ has a Hamilton cycle for all $k \geq 3$ and $a \geq 0$.
- open: $2 k+1 \leq n \leq(1+o(1)) 2.62 k$ where $n \neq 2 k+2^{a}$
- sparsest open case: $n=2 k+3$


## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.


## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- proof strategy:

1. construct a cycle factor
2. glue cycles together

## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- proof strategy:

1. construct a cycle factor 2. glue cycles together


$$
O_{3}=K(7,3)
$$



## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- proof strategy:

1. construct a cycle factor 2. glue cycles together


$$
O_{3}=K(7,3)
$$



## Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_{k}=K(2 k+1, k)$ has a Hamilton cycle for all $k \geq 3$.
- proof strategy:

1. construct a cycle factor 2. glue cycles together


## Hamilton cycles: sparse cases

## Hamilton cycles: sparse cases

- Theorem [Johnson 2004]:
$O_{k}$ has a cycle visiting a $\left(1-\frac{c}{\sqrt{k}}\right)$-fraction of all vertices.


## Hamilton cycles: sparse cases

- Theorem [Johnson 2004]:
$O_{k}$ has a cycle visiting a $\left(1-\frac{c}{\sqrt{k}}\right)$-fraction of all vertices.
- Theorem [M., Su 2017]:
$K(n, k)$ has a cycle visiting a $\frac{2 k}{n}$-fraction of all vertices.


## Hamilton cycles: sparse cases

- Theorem [Johnson 2004]:
$O_{k}$ has a cycle visiting a $\left(1-\frac{c}{\sqrt{k}}\right)$-fraction of all vertices.
- Theorem [M., Su 2017]:
$K(n, k)$ has a cycle visiting a $\frac{2 k}{n}$-fraction of all vertices.

$$
n=2 k+1:\left(1-\frac{1}{2 k+1}\right) \text {-fraction }
$$

## Our results

- Theorem 1:
$K(n, k)$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$, unless $(n, k)=(5,2)$.


## Our results

- Theorem 1:
$K(n, k)$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$, unless $(n, k)=(5,2)$.
- settles Hamiltonicity of $K(n, k)$ in full generality


## Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$ vertices $=\binom{[n]}{k}$


## Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$ vertices $=\binom{[n]}{k}$
edges $=$ pairs of sets with intersection size $s$ $|A \cap B|=s$



## Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$ vertices $=\binom{[n]}{k}$ edges $=$ pairs of sets with intersection size $s$ $|A \cap B|=s$

- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$ (otherwise trivial)


## Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$ vertices $=\binom{[n]}{k}$
edges $=$ pairs of sets with intersection size $s$ $|A \cap B|=s$

- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$ (otherwise trivial)
- $J(n, k, 0)=K(n, k)$ Kneser graphs


## Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$ vertices $=\binom{[n]}{k}$ edges $=$ pairs of sets with intersection size $s$

$$
|A \cap B|=s
$$



- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$ (otherwise trivial)
- $J(n, k, 0)=K(n, k)$ Kneser graphs
- $J(n, k, k-1)=$ (ordinary) Johnson graphs $J(n, k)$


## Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$ vertices $=\binom{[n]}{k}$
edges $=$ pairs of sets with intersection size $s$

$$
|A \cap B|=s
$$



- we assume $s<k$ and $n \geq 2 k-s+1_{[s=0]}$ (otherwise trivial)
- $J(n, k, 0)=K(n, k)$ Kneser graphs
- $J(n, k, k-1)=$ (ordinary) Johnson graphs $J(n, k)$
- vertex-transitive


## Generalized Johnson graphs

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.


## Generalized Johnson graphs

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$


## Generalized Johnson graphs

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$
- [Chen, Lih 1987] proved the cases $s \in\{k-1, k-2, k-3\}$


## Generalized Johnson graphs

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- results of [Tang, Liu 1973] settle the case $s=k-1$
- [Chen, Lih 1987] proved the cases $s \in\{k-1, k-2, k-3\}$
- [Jiang, Ruskey 1994], [Knor 1994] proved that $J(n, k, k-1)=J(n, k-1)$ is Hamilton-connected


## Our results

- Theorem 2:
$J(n, k, s)$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.


## Our results

- Theorem 2:
$J(n, k, s)$ has a Ham. cycle, unless $(n, k, s)=(5,2,0),(5,3,1)$.
- settles Hamiltonicity of $J(n, k, s)$ in full generality


## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$


## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$


## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$



## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$ vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$ edges $=$ pairs of sets $A \subseteq B$



## Bipartite Kneser graphs

$$
Q_{n}
$$

- Bipartite Kneser graphs $H(n, k)$ vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$ edges $=$ pairs of sets $A \subseteq B$
level $k$


## Bipartite Kneser graphs

$$
Q_{n}
$$

- Bipartite Kneser graphs $H(n, k)$ vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$



## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$ vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$ edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive

$$
\text { level } k_{\rightarrow} \text {. }
$$

## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$ vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive

- sparsest case $n=2 k+1$ : middle levels conjecture


## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive
- sparsest case $n=2 k+1$ : middle levels conjecture


## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive
- sparsest case $n=2 k+1$ : middle levels conjecture
- Theorem [M. 2016]: $H(2 k+1, k)$ has a Hamilton cycle for all $k \geq 1$.


## Bipartite Kneser graphs

- Bipartite Kneser graphs $H(n, k)$
vertices $=\binom{[n]}{k} \cup\binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
- we assume $k \geq 1$ and $n \geq 2 k+1$
- vertex-transitive
- sparsest case $n=2 k+1$ : middle levels conjecture
- Theorem [M. 2016]: $H(2 k+1, k)$ has a Hamilton cycle for all $k \geq 1$.
- Theorem [M., Su 2017]: $H(n, k)$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2 k+1$.


## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.


## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.



## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.

$$
B(G)
$$

## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.

$$
B(G)
$$



## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.


$$
B(G)
$$



## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.



## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.
- Lemma: If $G$ has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.



## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.
- Lemma: If $G$ has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.
- Corollary: If $K(n, k)$ has a Hamilton cycle, then $H(n, k)$ has a Hamilton cycle or path.



## Bipartite Kneser graphs

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.
- Lemma: If $G$ has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.
- Corollary: If $K(n, k)$ has a Hamilton cycle, then $H(n, k)$ has a Hamilton cycle or path.
- we thus obtain a new proof for Hamiltonicity of $H(n, k)$



## Summary of old and new results

Kneser graphs
$K(n, k)$

## Summary of old and new results



## Summary of old and new results

## spanning subgraph

generalized Kneser generalized Johnson graphs $K(n, k, s) \quad$ graphs $J(n, k, s)$

Theorem 2
BDC $s=0$ Corary
bipartite Kneser graphs $H(n, k)$

Kneser graphs
$K(n, k)$
Johnson graphs $J(n, k)$
Theorem 1
[Tang, Liu 1973]
$n=22+1$

| BDC |
| :--- |
| middle levels |
| graphs $H(2 k+1, k)$ |
| $\left[\begin{array}{ll}2 & 2016\end{array}\right]$ |

odd graphs
$O_{k}=K(2 k+1, k)$
[M., Nummenpalo, Walczak 2021]

## Summary of old and new results

## spanning subgraph

> generalized Kneser graphs $K(n, k, s)$

Corollary
generalized Johnson graphs $J(n, k, s)$

Theorem 2
$\operatorname{BDC} s=0$

Kneser graphs $K(n, k)$

Theorem 1

Johnson graphs $J(n, k)$
[Tang, Liu 1973]
bipartite Kneser graphs $H(n, k)$
[M., Su 2017]
$n=2 k+1 \quad$ BDC

- we settle Lovász' conjecture for all known families of vertex-transitive graphs defined by intersecting set systems


## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]


## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$


## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor

## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor
2. glue cycles together

## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by [M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$ )
2. glue cycles together

## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by [M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$ )
2. glue cycles together (needs $n \geq 2 k+3$ )

## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by [M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$ )
2. glue cycles together (needs $n \geq 2 k+3$ )

- requires analyzing the cycles


## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by [M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$ )
2. glue cycles together (needs $n \geq 2 k+3$ )

- requires analyzing the cycles
- model cycles by kinetic system of interacting particles


## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by [M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$ )
2. glue cycles together (needs $n \geq 2 k+3$ )

- requires analyzing the cycles
- model cycles by kinetic system of interacting particles
- reminiscent of the gliders in Conway's game of Life


## Proof outline

- two sparsest cases $n=2 k+1$ and $n=2 k+2$ settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2 k+3$

1. construct a cycle factor (works for $n \geq 2 k+1$ )
2. glue cycles together (needs $n \geq 2 k+3$ )

- requires analyzing the cycles
- model cycles by kinetic system of interacting particles
- reminiscent of the gliders in Conway's game of Life
- main technical innovation


## Cycle factor

- consider characteristic vector of vertices of $K(n, k)$ :


## Cycle factor

- consider characteristic vector of vertices of $K(n, k)$ : bitstrings of length $n$ with $k$ many 1 s


## Cycle factor

- consider characteristic vector of vertices of $K(n, k)$ : bitstrings of length $n$ with $k$ many 1 s
- Example: $n=12, k=5, X=\{1,3,7,11,12\}$



## Cycle factor

- consider characteristic vector of vertices of $K(n, k)$ : bitstrings of length $n$ with $k$ many 1 s
- Example: $n=12, k=5, X=\{1,3,7,11,12\}$



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- $f$ : complement matched bits



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- $f$ : complement matched bits



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- $f$ : complement matched bits



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- $f$ : complement matched bits



## Cycle factor

- parenthesis matching with $1=[$ and $0=]$ (cyclically)
- $f$ : complement matched bits

- $f$ is invertible $\rightarrow$ partition of $K(n, k)$ into disjoint cycles


## Cycle factor

- Example: $K(5,2)$



## Cycle factor

- Example: $K(5,2)$


Analyzing the cycles


Analyzing the cycles


Analyzing the cycles


- Two matched bits form a glider
- Glider moves forward by 1 unit per step

Analyzing the cycles


- Four matched bits form one glider
- Glider moves forward by 2 units per step


## Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)



## Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$

## Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$



## Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s



## Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$



- Uniform equation of motion: $s(t)=v \cdot t+s(0)$


## Gliders

- glider $:=$ set of matched 1 s and 0 s (same number of each)
- speed $:=$ numbers of $1 \mathrm{~s}=$ number of 0 s

$$
\text { speed }=1 \quad \text { speed }=2 \quad \text { speed }=3
$$



- Uniform equation of motion: $\quad \begin{aligned} & s(t) \\ \text { position (modulo } n) & \text { speed }\end{aligned}$ time $t=$ number of applications of $f$ starting position


## Overtaking of gliders



## Overtaking of gliders



## Overtaking of gliders



## Overtaking of gliders



- during overtaking, slower glider stands still for two time steps


## Overtaking of gliders



- during overtaking, slower glider stands still for two time steps
- faster glider is boosted by twice the speed of slower glider


## Overtaking of gliders



- non-uniform equations of motion:

$$
\begin{aligned}
& s_{1}(t)=v_{1} \cdot t+s_{1}(0) \\
& s_{2}(t)=v_{2} \cdot t+s_{2}(0)
\end{aligned}
$$

## Overtaking of gliders



- non-uniform equations of motion:

$$
\begin{aligned}
& s_{1}(t)=v_{1} \cdot t+s_{1}(0)-2 v_{1} \cdot c_{1,2} \\
& s_{2}(t)=v_{2} \cdot t+s_{2}(0)+2 v_{1} \cdot c_{1,2}
\end{aligned}
$$

## Overtaking of gliders



- non-uniform equations of motion:

$$
\begin{aligned}
& s_{1}(t)=v_{1} \cdot t+s_{1}(0)-2 v_{1} \cdot c_{1,2} \\
& s_{2}(t)=v_{2} \cdot t+s_{2}(0)+2 v_{1} \cdot c_{1,2}
\end{aligned}
$$

## Overtaking of gliders



- non-uniform equations of motion:

$$
\begin{aligned}
& s_{1}(t)=v_{1} \cdot t+s_{1}(0)-2 v_{1} \cdot c_{1,2} \\
& s_{2}(t)=v_{2} \cdot t+s_{2}(0)+2 v_{1} \cdot c_{1,2}
\end{aligned}
$$

Glider partition


Glider partition


## Glider partition



- gliders can be interleaved in complicated ways


## Glider partition



- gliders can be interleaved in complicated ways
- general glider partition rule works recursively on Motzkin path


## Glider partition



- gliders can be interleaved in complicated ways
- general glider partition rule works recursively on Motzkin path
- general equations of motion have overtaking counters $c_{i, j}$ for all pairs of gliders $i, j$


## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.


## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.
- Example: $K(8,3)$


## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.
- Example: $K(8,3)$
speeds



## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.
- Example: $K(8,3)$
speeds cycle length



## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.
- Example: $K(8,3)$
speeds cycle length



## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances


## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances
- don't have full characterization (complicated number theory)


## Cycle invariant

- Lemma: For any cycle in $K(n, k)$ defined by $f$, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances
- don't have full characterization (complicated number theory)
- don't know number of cycles


## Equations of motion

- equations of motion predict glider movement


## Equations of motion

- equations of motion predict glider movement



## Equations of motion

- equations of motion predict glider movement
- Lemma: For any cycle in $K(n, k)$ and every glider, there is $t>0$ such that $s(t)>s(0)$.



## Equations of motion

- equations of motion predict glider movement
- Lemma: For any cycle in $K(n, k)$ and every glider, there is $t>0$ such that $s(t)>s(0)$.
- 'no glider is trapped indefinitely'



## Equations of motion

- equations of motion predict glider movement
- Lemma: For any cycle in $K(n, k)$ and every glider, there is $t>0$ such that $s(t)>s(0)$.
- 'no glider is trapped indefinitely'
- proved by showing that matrix of equations of motion is nonsingular $(\operatorname{det} \neq 0)$.



## Gluing cycles



## Gluing cycles



## Gluing cycles



## Gluing cycles



4-cycles exist as $n \geq 2 k+3$

## Gluing cycles






## Gluing cycles

- connect cycles of factor to a single Hamilton cycle (tree-like)



## Gluing cycles

- connect cycles of factor to a single Hamilton cycle (tree-like)
- gluing 4-cycles must all be edge-disjoint



## Gluing cycles

- connect cycles of factor to a single Hamilton cycle (tree-like)
- gluing 4-cycles must all be edge-disjoint



## Gluing cycles



## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.


## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.



## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.



## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.



## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.




## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.



## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.




## Gluing cycles



- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.



## Gluing cycles

- decrease speed of slowest glider in $x$ by 1 , increase speed of another glider by 1
- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.



## Gluing cycles

- decrease speed of slowest glider in $x$ by 1 , increase speed of another glider by 1
- number partition of $x<_{\text {lex }}$ number partition of $y$
- Lemma: If $x$ and $y$ differ in an exchange of one outer matched pair of parenthesis, then $(x, f(x), y, f(y))$ is a gluing 4-cycle in $K(n, k)$.



## Gluing cycles

- decrease speed of slowest glider in $x$ by 1 , increase speed of another glider by 1
- number partition of $x<_{\text {lex }}$ number partition of $y$


## Gluing cycles

- decrease speed of slowest glider in $x$ by 1 , increase speed of another glider by 1
- number partition of $x<_{\text {lex }}$ number partition of $y$
- sequence of gluing cycles to connect to cycle with lex. largest number partition $k$


## Gluing cycles

- decrease speed of slowest glider in $x$ by 1 , increase speed of another glider by 1
- number partition of $x<_{\text {lex }}$ number partition of $y$
- sequence of gluing cycles to connect to cycle with lex. largest number partition $k$
- proves connectivity


## Open questions

- efficient algorithms?


## Open questions

- efficient algorithms?
- other vertex-transitive graphs (Cayley graphs, etc.)?


## Open questions

- efficient algorithms?
- other vertex-transitive graphs (Cayley graphs, etc.)?
- stronger Hamiltonicity properties: Hamilton-connectedness, factorization into HCs


## Thank you!

