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e we assume k > 1 and n > 2k—+1 (otherwise trivial)
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Basic properties

e vertex-transitive

e regular with degree (";k)
e cliques of size c if and only if n > ck
e 4-cycles if and only if n > 2k + 2

e ‘dense’ if n is large w.r.t. k

e ‘sparse’ if nis small w.r.t. k

e sparsest case n = 2k + 1

e Op:= K(2k + 1,k) odd graph [Biggs 1979]
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Kneser graphs: should be easier for dense cases
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e [B. Chen, Lih 1987]: n > (1 + o(1))k2/logk Q
o [Y. Chen 2000]: n > 3k Q

e Y. Chen+Fiiredi 2002]:
short proof for n =ck, c € {3,4,...,} 0

uses Baranyai's partition theorem for K*

e [Y. Chen 2000]: n > (1 +0(1))2.62 -k O

uses Baranyai, Kruskal-Katona, Ray-Chaudhuri-Wilson
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sparsest case n = 2k + 1
O := K(2k + 1, k) odd graph [Biggs 1979]

Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]:
Or = K(2k + 1, k) has a Hamilton cycle for all k£ > 3.

Oy = K(5,2) is Petersen graph

Balaban 1973]: k = 3,4 Q
Meredith, Lloyd 1972]: k = 5,6 0
Mather 1976]: k =7 Q
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The vertices of the graph O, are indexed by the 7-subsets of a 15-set. Two
vertices are adjacent if and only if their labeling sets are disjoint. This paper
demonstrates a Hamiltonian circuit in O .

The following Hamiltonian circuit for Oy was discovered by the methods
of Meredith and Lloyd [1], with the help of a computer.
1234567: 9 110 211 712 3 2 413 914101511
712 815 9 510 615 7 3 8 410 513

614 7 210 212 413 5 1 6 210 312
415 5 111 21513 2 3 6 412 51311
312 5 210 6141311 7 811 410 1 9
13 512 41115 4121513 514 615 9 4
12 513 8151110 9 413 715 8 314 6
9 7 2 8 510 6 1 7 413 5 8 9 5 8
111415 71013 912 41114 612 5 8 15
7 9 6 71312 3 4 7 315 6 313 414
6 411 7 4 212 313 4 513 412 111
14 5§13 1 7101215 5 8 3 6 2 41114
1013 912 11115 914 313 212 1 815
414 310 2 8 1 511 410 3 912 6 2
511 410 3 714 612 511 4 813 7 1
612 5 9 2 812 710 6 912 811 710
1 913 812 7 612 713 8 1 9 310 5§
11 612 715 8 4 9 110 5 2 611 912
10 4 21412 2 4 6 710141511 5 211
8 91012131415 11415 6 812 7 9 14
510 1 6 8 514 2 714 6 9 3 811 7
1013 912151114 413 1 715 514 210
1 715 112 21013 2 6 8 2 710 2 8
14 31315 41210 4151011151014 411
1 715 5 81012 2 6 4 51 4 9 3 8
7 3B 4 9 51112 515 4 9 3 8 2 7
1 6121315 514 410 3 9 2 13 = 2345678, etc.
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we assume s < k and n > 2k — s+ 15— (otherwise trivial)
J(n,k,0) = K(n, k) Kneser graphs
J(n,k,k — 1) = (ordinary) Johnson graphs J(n, k)

vertex-transitive
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e Conjecture [Chen, Lih 1987], [Gould 1991]:
J(n,k,s) has a Ham. cycle, unless (n, k,s)=(5,2,0),(5,3,1).

e results of [Tang, Liu 1973] settle the case s =k — 1
e [Chen, Lih 1987] proved the cases s € {k — 1,k — 2,k — 3}

e [Jiang, Ruskey 1994], [Knor 1994] proved that
J(n,k,k—1)=J(n,k—1) is Hamilton-connected
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¢ Bipartite Kneser graphs H(n, k)

vertices = ([Z]) U (n[ﬁ]k)

edges = pairs of sets A C B ¥y .

e we assume k> 1and n > 2k +1

e vertex-transitive

e sparsest case n = 2k + 1: middle levels conjecture

e Theorem [M. 2016]:
H(2k + 1, k) has a Hamilton cycle for all £ > 1.

e Theorem [M., Su 2017]:
H(n, k) has a Hamilton cycle for all kK > 1 and n > 2k + 1.



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).

e Lemma: If G has a Hamilton cycle and is not bipartite, then
B(G) has a Hamilton cycle or path.



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).

e Lemma: If G has a Hamilton cycle and is not bipartite, then
B(G) has a Hamilton cycle or path.

e Corollary: If K(n, k) has a Hamilton cycle, then H(n, k) has

a Hamilton cycle or path.
B(G) V

G dy e



Bipartite Kneser graphs

e Observation: H(n, k) is bipartite double cover of K(n, k).

e Lemma: If G has a Hamilton cycle and is not bipartite, then
B(G) has a Hamilton cycle or path.

e Corollary: If K(n, k) has a Hamilton cycle, then H(n, k) has
a Hamilton cycle or path.

e we thus obtain a new proof “
for Hamiltonicity of H(n, k)
B(G) V

G dy e



Summary of old and new results

Kneser graphs
K(n, k)




Summary of old and new results

Kneser graphs
K(n, k)

n :le +1

odd graphs
O = K2k + 1,k)




Summary of old and new results

BDC
)
bipartite Kneser Kneser graphs
graphs H(n, k) K(n,k)
n :le + 1
odd graphs

O = K2k + 1,k)




Summary of old and new results

BDC

oA

bipartite Kneser Kneser graphs
graphs H(n, k) K(n,k)

BDC n :le +1

s

middle levels odd graphs
graphs H(2k+1,k) | | O = K2k + 1, k)




Summary of old and new results

BDC

oA

bipartite Kneser Kneser graphs
graphs H(n, k) K(n,k)

n :lqut 1 BDC n :leJr 1

s

middle levels odd graphs
graphs H(2k+1,k) | | O = K2k + 1, k)




Summary of old and new results

BDC

oA

generalized Johnson
graphs J(n, k, s)

bipartite Kneser
graphs H(n, k)

Kneser graphs
K(n, k)

n :lqut 1

BDC n :le +1

s

middle levels

odd graphs

graphs H(2k+1,k) | | O = K2k + 1, k)




Summary of old and new results

BDC =0

oA

bipartite Kneser
graphs H(n, k)

Kneser graphs
K(n, k)

n :lqut 1

BDC n :le +1

s

middle levels

graphs H(2k+1,k) | | O = K2k + 1, k)

odd graphs

generalized Johnson
graphs J(n, k, s)




Summary of old and new results

generalized Johnson
graphs J(n, k, s)

BDC =0 |s=k-1

bipartite Kneser Kneser graphs Johnson graphs
graphs H(n, k) K(n,k) J(n, k)

n :lqut 1 BDC n :leJr 1

s

middle levels odd graphs
graphs H(2k+1,k) | | O = K2k + 1, k)




Summary of old and new results

generalized Johnson
graphs J(n, k, s)

BDC //séo/ ls=k—1

A
bipartite Kneser Kneser graphs Johnson graphs
graphs H(n, k) K(n,k) J(n, k)

[M., Su 2017] [Tang, Liu 1973]
n :l% +1 BDC n :le +1

y

middle levels odd graphs

graphs H(2k + 1, k)
M. 2016]

O = K2k + 1,k)

[M., Nummenpalo, Walczak 2021]




Summary of old and new results

BDC

oA

generalized Johnson
graphs J(n, k, s)

Theorem 2

=0 |s=k-1

bipartite Kneser
graphs H(n, k)
M., Su 2017]

Kneser graphs
K(n, k)
Theorem 1

Johnson graphs
J(n, k)
[Tang, Liu 1973]

n :le +1 BDC

s

7@:{2k—k1

middle levels
graphs H(2k + 1, k)
M. 2016}

odd graphs
O = K2k + 1,k)

[M., Nummenpalo, Walczak 2021]




Summary of old and new results

BDC

oA

generalized Kneser
graphs K (n, k, s)

generalized Johnson
graphs J(n, k, s)

Theorem 2

=0 |s=k-1

bipartite Kneser
graphs H(n, k)
M., Su 2017]

Kneser graphs
K(n, k)

Theorem 1

Johnson graphs
J(n, k)
[Tang, Liu 1973]

n :le +1 BDC

s

7@:{2k—k1

middle levels
graphs H(2k + 1, k)
M. 2016}

odd graphs
O = K2k + 1,k)

[M., Nummenpalo, Walczak 2021]




Summary of old and new results
spanning subgraph

y

BDC

generalized Kneser
graphs K (n, k, s)
Corollary

generalized Johnson
graphs J(n, k, s)

Theorem 2

s:ol/%?o/ls:k—1

oA

bipartite Kneser
graphs H(n, k)
M., Su 2017]

Kneser graphs
K(n, k)
Theorem 1

Johnson graphs
J(n, k)
[Tang, Liu 1973]

n :le +1 BDC

s

n :le +1

middle levels
graphs H(2k + 1, k)
M. 2016}

odd graphs
O = K2k + 1,k)

[M., Nummenpalo, Walczak 2021]




Summary of old and new results
spanning subgraph

y

BDC

generalized Kneser
graphs K (n, k, s)
Corollary

generalized Johnson
graphs J(n, k, s)

Theorem 2

s:ol/ﬁo/ls:k—1

oA

bipartite Kneser

Kneser graphs

Johnson graphs

graphs H(n, k) K(n,k) J(n, k)
[M., Su 2017] Theorem 1 [Tang, Liu 1973]
n=[12k+1 BDC n =2k +1
m| e we settle Lovasz' conjecture for all known families of
gr vertex-transitive graphs defined by intersecting set systems
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Proof outline

e two sparsest cases n = 2k + 1 and n = 2k + 2 settled by
[M., Nummenpalo, Walczak 2021]+[Johnson 2011] 0

e new proof assumes n > 2k + 3

1. construct a cycle factor  (works for n > 2k + 1)
2. glue cycles together (needs n > 2k + 3)

e requires analyzing the cycles
o model cycles by kinetic system of interacting particles
o reminiscent of the gliders in Conway’'s game of Life

o main technical innovation
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e parenthesis matching with 1=[ and 0=] (cyclically)
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[ L

i 1|
[ 1 [ 1 1] ]
1 01000 0 11

[
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Cycle factor

e parenthesis matching with 1=[ and 0=] (cyclically)

e f: complement matched bits

— T
[ L

i 1|

L1 L1 11 []
10100010 1 1
H B B I
1011101000 !

I =
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e parenthesis matching with 1=[ and 0=] (cyclically)

e f: complement matched bits
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B
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Cycle factor

e parenthesis matching with 1=[ and 0=] (cyclically)

e f: complement matched bits

1 r 1 1 | ™ T
L1 011171 [] [ [
10100010 1 1
H B B I
1011101000 !
HE B
001000101110 /
H H BN

e f is invertible — partition of K(n, k) into disjoint cycles
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Analyzing the cycles

4

e Two matched bits form a glider

e Glider moves forward by 1 unit per step

(n, k) = (15,1)

5'F.

time



Analyzing the cycles

(n, k) = (15,2)

f time

e Four matched bits form one glider

e Glider moves forward by 2 units per step
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Gliders

e glider := set of matched 1s and Os (same number of each)

e speed := numbers of 1s = number of Os

speed =1 speed = 2 speed = 3

_BEE _DOEN !
. L

s(t)

e Uniform equation of motion: -1+

position (modulo n speed [ [

time ¢ = number of applications of f starting position
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(n, k) = (15,4)

time

4

58

e during overtaking, slower glider stands still for two time steps

e faster glider is boosted by twice the speed of slower glider
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Overtaking of gliders

(n, k) = (15,4)

4

time

58

e non-uniform equations of motion:

Sl(t) = U1 - T

— 81(0)

Sg(t) — U9 - T

- S9 (O)

—2U1 * C1,2

energy conservation!
+201 - €1 2 &Y

c1.2 1= number of overtakings
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Glider partition

time

e gliders can be interleaved in complicated ways
e general glider partition rule works recursively on Motzkin path

e general equations of motion have overtaking counters c; ; for
all pairs of gliders 1, 5
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Cycle invariant

e Lemma: For any cycle in K(n, k) defined by f, the set of
gliders is invariant.

e cycles are characterized by glider speeds and their relative
distances

e don't have full characterization (complicated number theory)

e don't know number of cycles
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Equations of motion

e equations of motion predict glider movement

e Lemma: For any cycle in K(n, k) and every glider, there is
t > 0 such that s(t) > s(0).

. : : - .. , ERE BN L]
e 'no glider is trapped indefinitely EE BN EEEE
Il..l.llll

e proved by showing that matrix
of equations of motion is non-

singular (det # 0).
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Gluing cycles

e Lemma: If x and y differ in an exchange of one outer
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Gluing cycles

e decrease speed of slowest glider in « by 1, increase speed of
another glider by 1

e Lemma: If x and y differ in an exchange of one outer
matched pair of parenthesis, then (z, f(x),y, f(y)) is a
gluing 4-cycle in K(n, k).
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Gluing cycles

e decrease speed of slowest glider in « by 1, increase speed of
another glider by 1

e number partition of x <jox Nnumber partition of y

e Lemma: If x and y differ in an exchange of one outer
matched pair of parenthesis, then (z, f(x),y, f(y)) is a
gluing 4-cycle in K(n, k).

|

¢ | I

I N

| 1

N

B

N

m____ B

N

speeds
32,1,1
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Gluing cycles

e decrease speed of slowest glider in « by 1, increase speed of

another glider by 1

e number partition of x <jox Nnumber partition of y
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4,2,1,0
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Gluing cycles

e decrease speed of slowest glider in « by 1, increase speed of

another glider by 1
3,2,1,1
e number partition of © <jox Number partition of y 1| -1

D «e—
O -—

Ot+-—Hete—Ne+—W+—"N

e sequence of gluing cycles to connect to cycle with
lex. largest number partition £

_|_
Oe—1HH
e

+
|
=

+
~N+—"— O +—Ule——h

|
=
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Gluing cycles

e decrease speed of slowest glider in « by 1, increase speed of
another glider by 1

3,2,1,1
e number partition of £ <jex number partition of y +1l _1l
e sequence of gluing cycles to connect to cycle with 42.1,0
lex. largest number partition & +1l l—l
e proves connectivity 4,3,0
—|—1l l—l
5,2
A
0,1
+1l l_l
7,0
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Open questions

o efficient algorithms?

e other vertex-transitive graphs (Cayley graphs, etc.)?

e stronger Hamiltonicity properties: Hamilton-connectedness,
factorization into HCs



Thank youl



