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• cliques of size c if and only if n ≥ ck

• ‘dense’ if n is large w.r.t. k

• ‘sparse’ if n is small w.r.t. k

• 4-cycles if and only if n ≥ 2k + 2

• sparsest case n = 2k + 1

• vertex-transitive

• Ok := K(2k + 1, k) odd graph [Biggs 1979]
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• long conjectured to have a Hamilton cycle

• notorious exception: Petersen graph K(5, 2)

• Conjecture [Lovász 1970]:

Every connected vertex-transitive graph admits a Hamilton
path.

Every connected vertex-transitive graph admits a Hamilton
cycle, with five exceptions (one of them K(5, 2)).

• unknown even for specific and explicit families of graphs
(e.g., Cayley graphs)

• Kneser graphs: should be easier for dense cases
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Hamilton cycles: sparse cases
• Theorem [Johnson 2004]:

Ok has a cycle visiting a (1− c√
k
)-fraction of all vertices.

• Theorem [M., Su 2017]:
K(n, k) has a cycle visiting a 2k

n -fraction of all vertices.

n = 2k + 1: (1− 1
2k+1 )-fraction
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• Conjecture [Chen, Lih 1987], [Gould 1991]:

J(n, k, s) has a Ham. cycle, unless (n, k, s)=(5, 2, 0), (5, 3, 1).

• [Jiang, Ruskey 1994], [Knor 1994] proved that
J(n, k, k − 1) = J(n, k − 1) is Hamilton-connected

• results of [Tang, Liu 1973] settle the case s = k − 1

• [Chen, Lih 1987] proved the cases s ∈ {k − 1, k − 2, k − 3}
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• Theorem [M., Su 2017]:
H(n, k) has a Hamilton cycle for all k ≥ 1 and n ≥ 2k + 1.
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Bipartite Kneser graphs
• Observation: H(n, k) is bipartite double cover of K(n, k).

G

B(G)

• Lemma: If G has a Hamilton cycle and is not bipartite, then
B(G) has a Hamilton cycle or path.

• Corollary: If K(n, k) has a Hamilton cycle, then H(n, k) has
a Hamilton cycle or path.

• we thus obtain a new proof
for Hamiltonicity of H(n, k)

x y

x′ y′
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graphs K(n, k, s)

Johnson graphs
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graphs H(n, k)

[M., Su 2017]

Kneser graphs
K(n, k)

middle levels
graphs H(2k+1, k)

[M. 2016]

odd graphs
Ok = K(2k + 1, k)

n = 2k + 1

s = 0 s = k − 1

spanning subgraph

BDC s = 0

generalized Johnson
graphs J(n, k, s)

n = 2k + 1 BDC

[M., Nummenpalo, Walczak 2021]

Theorem 1 [Tang, Liu 1973]

Corollary

• we settle Lovász’ conjecture for all known families of
vertex-transitive graphs defined by intersecting set systems
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Proof outline

1. construct a cycle factor

2. glue cycles together

• two sparsest cases n = 2k + 1 and n = 2k + 2 settled by

[M., Nummenpalo, Walczak 2021]+[Johnson 2011]

• new proof assumes n ≥ 2k + 3

(works for n ≥ 2k + 1)

(needs n ≥ 2k + 3)

model cycles by kinetic system of interacting particles

main technical innovation

• requires analyzing the cycles

reminiscent of the gliders in Conway’s game of Life
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Cycle factor
• parenthesis matching with 1=[ and 0=] (cyclically)

• f : complement matched bits

1 0 0 0 0 11 0 1 1
[ ] [ ] [ ]] ] [ [

10 011 0 1 01 0
f

• f is invertible → partition of K(n, k) into disjoint cycles

0
]

0
]

0 0

10 0 0 01 10 10 10
f
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f time

(n, k) = (15, 2)

• Glider moves forward by 2 units per step

• Four matched bits form one glider

Analyzing the cycles
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Gliders

speed = 1

• glider := set of matched 1s and 0s (same number of each)

• speed := numbers of 1s = number of 0s

speed = 2 speed = 3

s(t) = v · t+ s(0)

t

• Uniform equation of motion:

s(t)

position (modulo n) speed

time t = number of applications of f starting position
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Overtaking of gliders

f time

(n, k) = (15, 4)

• faster glider is boosted by twice the speed of slower glider

• during overtaking, slower glider stands still for two time steps



Overtaking of gliders

f time

(n, k) = (15, 4)

s1(t) = v1 · t+ s1(0)

• non-uniform equations of motion:

s2(t) = v2 · t+ s2(0)



Overtaking of gliders

f time

(n, k) = (15, 4)

s1(t) = v1 · t+ s1(0)

• non-uniform equations of motion:

s2(t) = v2 · t+ s2(0)

−2v1 · c1,2
+2v1 · c1,2



Overtaking of gliders

f time

(n, k) = (15, 4)

s1(t) = v1 · t+ s1(0)

• non-uniform equations of motion:

s2(t) = v2 · t+ s2(0)

−2v1 · c1,2
+2v1 · c1,2

c1,2 := number of overtakings



Overtaking of gliders

f time

(n, k) = (15, 4)

s1(t) = v1 · t+ s1(0)

• non-uniform equations of motion:

s2(t) = v2 · t+ s2(0)

−2v1 · c1,2
+2v1 · c1,2

c1,2 := number of overtakings

energy conservation!
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Glider partition

f time

(n, k) = (15, 6)

• gliders can be interleaved in complicated ways

• general glider partition rule works recursively on Motzkin path

• general equations of motion have overtaking counters ci,j for
all pairs of gliders i, j
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Cycle invariant
• Lemma: For any cycle in K(n, k) defined by f , the set of

gliders is invariant.

• Example: K(8, 3)

1, 1, 1

1, 1, 1

3

2, 1

2, 1

8

8

8

16

16

speeds cycle length

56 =
(
8
3

)
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Cycle invariant
• Lemma: For any cycle in K(n, k) defined by f , the set of

gliders is invariant.

• cycles are characterized by glider speeds and their relative
distances

• don’t have full characterization (complicated number theory)

• don’t know number of cycles
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• equations of motion predict glider movement

• Lemma: For any cycle in K(n, k) and every glider, there is
t > 0 such that s(t) > s(0).

• proved by showing that matrix
of equations of motion is non-
singular (det ̸= 0).

Equations of motion

• ‘no glider is trapped indefinitely’ time
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Gluing cycles
• decrease speed of slowest glider in x by 1, increase speed of

another glider by 1
3,2,1,1

−1

4,2,1,0

+1

−1

4,3,0

+1

−1

5,2

+1

−1

6,1

+1

• sequence of gluing cycles to connect to cycle with
lex. largest number partition k

• number partition of x <lex number partition of y

−1

7,0

+1

• proves connectivity
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Open questions

• efficient algorithms?

• other vertex-transitive graphs (Cayley graphs, etc.)?

• stronger Hamiltonicity properties: Hamilton-connectedness,
factorization into HCs



Thank you!


